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Genetic perturbation of T cell receptor (TCR) T cells is a promising method to un-
lock better TCR T cell performance to create more powerful cancer immunotherapies, but
understanding the changes to T cell behavior induced by genetic perturbations remains
a challenge. Prior studies have evaluated the effect of different genetic modifications with
cytokine production and metabolic activity assays. Live-cell imaging is an inexpensive and
robust approach to capture TCR T cell responses to cancer. Most methods to quantify T
cell responses in live-cell imaging data use simple approaches to count T cells and cancer
cells across time, effectively quantifying how much space in the 2D well each cell type covers,
leaving actionable information unexplored. In this study, we characterize changes in TCR
T cell’s interactions with cancer cells from live-cell imaging data using explainable artificial
intelligence (AI). We train convolutional neural networks to distinguish behaviors in TCR
T cell with CRISPR knock outs of CUL5, RASA2, and a safe harbor control knockout.
We use explainable AI to identify specific interaction types that define different knock-out
conditions. We find that T cell and cancer cell coverage is a strong marker of TCR T cell
modification when comparing similar experimental time points, but differences in cell aggre-
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gation characterize CUL5KO and RASA2KO behavior across all time points. Our pipeline
for discovery in live-cell imaging data can be used for characterizing complex behaviors in
arbitrary live-cell imaging datasets, and we describe best practices for this goal.

Keywords: Explainable AI, Grad-CAM, machine learning, live cell imaging.

1. Introduction

Since FDA approval in 2017, chimeric antigen receptor (CAR) T cell immunotherapies have
proven effective at treating advanced leukemias and lymphomas.1,2 CAR T cell therapy uses
ex vivo modification of native patient T cells to express a chimeric antigen receptor (CAR),
capable of binding to surface markers of cancerous cells, to enhance T cell immunological
response. T-cell receptor (TCR) therapy is a related method of treatment that uses naturally
existing TCRs, protein complexes that bind to a cell’s major histocompatibility complex
(MHC), as an alternative to CAR proteins. TCR therapy targets various cancers by recognizing
a specific antigen presented by a human leukocyte antigen (HLA) on cancer cell surfaces. This
reduces the risk of toxicity associated with CAR T cell therapy, which currently struggles
to distinguish between solid cancer cells and normal tissues.1 TCR therapy, in contrast, has
demonstrated effective responses against multiple solid cancer types such as melanoma and
lung carcinoma with reduced off-target effects.3

Genetic editing of CAR and TCR T cells with CRISPR-based tools is an emerging ap-
proach to engineer improved T cell therapies. CRISPR knock out of the RASA2 (RASA2KO)
or CUL5 (CUL5KO) genes, for example, has been demonstrated to improve T cell perfor-
mance against cancer cells in vitro.4 RASA2 is a signalling checkpoint in human T cells and
increases in response to chronic antigen exposure. TCR and CAR T cells without RASA2
show better activation, higher cytokine production, and increased metabolic activity, en route
to improved cancer cell removal. These RASA2KO T cells also have a survival advantage in
mouse models of leukemia and other cancers.4 CUL5 is known to be a negative regulator of
the signaling pathways in cytotoxic T lymphocytes. Knocking out CUL5 has been shown to
effectively inhibit tumor growth in mouse studies.5 Although these genes have been identified
as effective modifications in TCR T cells in in vivo mouse studies, understanding the biologi-
cal mechanisms underlying these positive outcomes remains a challenge due to the complex,
multi-scale nature of T cell and cancer cell interactions in humans.

Live-cell imaging is a common approach for evaluating the success of different types of
modified T cells. Live-cell imaging with high-resolution 2D imaging from one or more channels,
usually a bright field along with fluorescent marker channels, across days at fixed time intervals
(e.g., every four minutes) captures the dynamics of co-cultures of cancer and modified T cells.
Traditional analyses quantify the total amount of cancer cell-specific fluorescent markers as a
proxy of tumor response to treatment.4–6 Live-cell imaging has been used to identify dynamic
behavior such as morphological changes during T cell killing, or differences in response to

Pacific Symposium on Biocomputing 2025

383



liquid or solid tumors, using deep learning methods to segment sequential images.7 Even with
existing approaches, many questions about dynamic cellular behaviors are difficult to answer.

Computer vision, a subfield of AI, is advancing rapidly in biomedical imaging. Deep learn-
ing models, especially convolutional neural networks (CNNs), enable extraction of complex
phenotypes from live-cell imaging data. This includes cell segmentation, single-cell track-
ing, spatiotemporal pattern recognition, and predictive modeling, all of which may be used
to study the therapeutic behavior of these modified T cells. Efforts are underway to inte-
grate CNN-driven platforms with patient-derived organoids (PDOs) for personalized drug
research, exemplified by projects like OrganoID8 and OrBITS.9 While these tools are pow-
erful, their prediction processes are black-box and challenging to understand. Interpreting a
CNN’s decision-making process should provide important information for researchers attempt-
ing to gain biological insights from their live-cell experiments. Explainable AI techniques have
emerged that allow researchers to interrogate the features of images that most directly explain
deep learning models’ predictions and performance.10,11

In this work, we demonstrate the ability of explainable AI to characterize modified T cell
behavioral changes under genetic perturbation. We identify phenotypic differences between
TCR T cells with beneficial RASA2 or CUL5 knock-outs from live-cell imaging data versus
TCR T cell negative controls. We use a suite of CNN classifiers trained to predict one of three
genetic perturbations captured in live-cell imaging of TCR T cells co-cultured with cancer
cells. We use Grad-CAM, an image explainable AI technique that estimates the change in
prediction as a function of changes in pixel space, to identify the specific regions in held-out
live-cell images that inform prediction for control Safe Harbor KO, RASA2KO, and CUL5KO
TCR T cells. Grad-CAM highlights the regions of the image that contribute to classification
as each output class. By highlighting regions that contribute to classification decisions, the
Grad-CAM interpretation of images allows us to identify the cell-level phenotypic changes
associated with each TCR T cell experiment, and we use these interpretable image markers
to characterize the distinct T cell behaviors in the three experimental conditions. Our work
develops an interpretable deep learning workflow for the analysis of live-cell imaging data,
and we show the benefits of our approach by characterizing the differential behavior of SHKO
(control), RASA2KO, and CUL5KO TCR T cells.

2. Methods

2.1. Data Generation

2.1.1. Isolation of primary T cells from healthy donors

Leukopaks from deidentified healthy donors with approved IRBs were purchased from Stem-
Cell Technologies. Primary human T cells were isolated with the EasySep Human T Cell
Isolation Kit (StemCell Technologies) according to the manufacturer’s protocol. T cells were
seeded at a density of 1 million cells per mL maintained in X-Vivo-15 medium supplemented
with 5% fetal bovine serum, 50 µM beta-mercaptoethanol, and 10 mM N-acetyl-L-cysteine plus
100 IU/mL of IL-2 and activated with Dynabeads Human T-Activator CD3/CD28 (Gibco)
at a 1:1 bead-to-cell ratio.
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2.1.2. CRISPR KO in primary human T cells using Cas9–RNP electroporation

T cell transduction was accomplished by adding concentrated lentivirus directly to the T cells
24 hours after activation with Dynabeads Human T-Activator CD3/CD28, 40 µL virus per
1× 106 T cells in X-Vivo-15. At 48 h post-activation, Cas9–sgRNA–RNP electroporation was
conducted with the Amaxa P3 Primary Cell 96-well 4D-Nucleofector Kit (Lonza). The safe
harbor T cells were targeted using the AAVS1 sequence GGGCCACTAGGGACAGGAT, the
RASA2 -ablation T cells with the sequence AGATATCACACATTACAGTG, and the CUL5 -
ablation T cells with the sequence ATTGGAGTAAGAGAATCCTA. crRNAs and tracrRNAs
were then complexed 1:1 by volume and incubated for 30 minutes at 37C to form sgRNAs.
The sgRNAs were then mixed with Cas9 (stock concentration of 40 µM, QB3 Macrolab) at
1:1 by volume for 15 minutes at 37C to produce ribonucleoproteins (RNPs) complexes. After
counting, T cells were resuspended in P3 buffer at 1× 106 per 20 µl, mixed with 3 µl of RNPs,
and added to a 96-well electroporation plate. Electroporation was performed using using the
EH115 protocol and recovered by adding 80 µl T cell medium (X-Vivo-15, Lonza) at 37C for
15 min. Cells were transferred to appropriate culture vessels containing X-Vivo-15 medium
supplemented with IL-2 containing 100 IU per mL.

2.1.3. Repetitive stimulation assay

Tumor cells were maintained in a complete RMPI (Gibco) consisting of 1% penicillin-
streptomycin (Gibco), GlutaMAX supplement (Gibco) and 10% fetal bovine serum (Corning),
and then resuspended in T cell medium. T cells were seeded on top of the cancer cells at a
1:1 E:T ratio with IL-2 at 100 IU mL−1. Subsequent repeated co-cultures were set up every
48 h. For each co-culture, T cells were counted using the Cellaca MX High-throughput Cell
Counter (Revity), percentage of TCR+ cells was measured via flow cytometry, and T cells
were replated onto fresh tumor cells every 48 hours maintaining a 1:1 E:T ratio.

2.1.4. In vitro cancer killing assay by TCR T cells

Antigen-specific T cells were co-cultured in X-VIVO-15 plus supplements – 100 IU IL-2 per
mL and 1X Glucose (Gibco) – with mKate+ A375 cells pre-seeded in a 96-well flat-bottom
plates at a 1:1 E:T ratio. Images were captured every 4 minutes over a 24-hour span using
the IncuCyte S3 live-cell imaging platform (Essen Bioscience). The mKate+ object counts for
each well were recorded over time.

2.2. Model architecture, training, and evaluation

A convolution neural network was trained to identify the TCR T cell genetic perturbation –
RASA2KO, CUL5KO, or SHKO – from a single 300 by 300 pixel subsection of each image.
The network was trained on images from nine of the replicates, three from each condition, and
validated on the remaining three held-out wells. The model consists of a ResNet5012 block,
a fifty layer residual convolutional neural network (CNN), that feeds into a fully connected
linear layer to predict the weights for each class. ResNet50 is a CNN designed for image
classification tasks. The first stage consists of 64 7 × 7 convolutional filters, followed by four
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stages of residual blocks. These stages contain filters configured as follows: the first has 64,
64, and 256 filters; the second has 128, 128, and 512 filters; the third has 256, 256, and 1,024
filters; and the fourth has 512, 512, and 2,048 filters. The network ends with a fully connected
layer with one neuron per possible output class, which is three in our application. The initial
convolutional layer and first layer of each stage uses a stride size of 2, while all other layers
use a stride size of 1. The weights and biases of the final, fully connected output linear layer
were trained to minimize the cross-entropy loss of the predicted probability of each class, a
softplus of the linear output layer, to the true data label.

The untrained parameters of the ResNet50 block were initialized as the parameters of
ImageNet.13 These weights capture high-level features, such as edges and shapes, allowing us
to reach accurate classification faster. The last layer of the model was fine tuned on 12,600
unique frames of our training data, evenly split among the three conditions, with two frames
per batch. We use the quarter-sectioned 300 × 300 pixel images to minimize the effects of
downsampling, as ResNet50 takes as input 224 × 224 pixel images and downsamples larger
inputs. The brightfield phase images were converted from grayscale to RGB to match the
required input parameters of Resnet50. The CNN was fine tuned with the Adam optimizer14

for forty epochs with a learning rate of 1 × 10−3. The same procedure and architecture was
also used to train a CNN classifier on a subset of frames from between 800 and 9996 minutes
(frames 200 through 249 out of 350 total) into the experiment, a total of 1800 images, to
evaluate the time dependence of the predictions. The model was trained on an NVIDIA A30
GPU using CUDA, PyTorch, and PyTorch lightning.

To obtain “visual explanations” for the classification of each frame, we applied the gradient-
weighted class activation mapping (Grad-CAM) technique10 to the model for each frame
of the validation set. This technique computes the gradients of the target class score with
respect to the feature maps of the final convolutional layer of the network. These gra-
dients are pooled across the convolutional filter to provide a spatial-average importance
value for different regions of the input image that contribute to the target class score.
Grad-CAM returns an “importance” of each pixel to the final prediction that can be su-
perimposed onto the original images and visually inspected to identify relevant image de-
tails. Model training and analysis code is available at https://github.com/25marcusb/

Understanding-TCR-T-cell-knockout-behavior-using-interpretable-machine-learning.

3. Results

3.1. Convolutional neural networks can distinguish between different
genetic perturbations from a single frame

We first validate the predictive ability of the trained CNN classifier to distinguish the genetic
perturbation given a section of a live-cell imaging frame. The CNN was trained to distinguish
between three classes - RASA2KO T cells, CUL5KO T cells, and SHKO T cells. RASA2KO
and CUL5KO are known to improve T cell anti-cancer activity after repetitive stimulation.4,5

The SHKO T cells, with AAVS1 knockouts as a negative control, should be “exhausted”
after repetitive stimulation, leading to less anti-cancer activity.4 On held-out validation data,
the model assigns more than 50% probability to the correct class on 2,974 out of 4,200 test
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images evenly balanced across classes, an accuracy of 71%. The CNN model outperforms a
traditional support vector machine (SVM) classifier that predicts the perturbation from cell
counts from segmentation, which has a test accuracy of only 50%. We find that the model has
consistent precision around 70%, e.g., the fraction of true RASA2KO frames out of the set of
all frames predicted to be RASA2KO, across the genetic perturbations (Table 1). However, we
observe that the ability to recall the SHKO control condition is much worse than the ability
to recall the genetic perturbations (Table 1). While the “confusion” with the safe harbor
control indicates that many features of T cell and cancer cell dynamics are maintained after
perturbation, the relatively low number of incorrect cross predictions between the two genetic
knock-outs suggests the model can differentiate the changes from CRISPR perturbation and
be used as a tool to interrogate the different behaviors.

Predicted SHKO Predicted CUL5KO Predicted RASA2KO Recall

True SHKO 387 609 373 28%
True CUL5KO 67 1318 13 94%
True RASA2KO 114 7 1268 91%

Precision 68% 68% 76%

Table 1: Full prediction model confusion matrix. The rows represent the true labels
for the three experiment types; the columns represent the predicted labels. The last row and
column of the matrix are the precision and recall, respectively, for each experiment class label.

We observe a relationship between the collection time of the image and the ability to
accurately classify its genetic perturbations. For the control SHKO images, the model tends
to classify early time frames as CUL5KO and later images as RASA2KO (Figure 1). To
better understand how time affects classification performance, we trained a limited-time model
with the same architecture, but we restricted the training data to include only images from
frames 200 to 249, between 800 and 996 minutes post culture, around the inflection point of
RASA2KO and CUL5KO mis-classification. We find that this limited-time model has higher
validation accuracy of 89% on held-out data (also in the same time window), and makes
relatively few misclassifications (Table 2). CNN-based prediction again outperforms a cell
count based SVM classifier, which has an overall test accuracy of 64%. This model does not
generalize well to early time frames, but has above 75% accuracy in the 200 minute periods
before and after its training data (Figure 2). The inability to generalize well to early time
frames is expected given the lack of differentiation between all three conditions in the early
parts of the experiment. More generally, this change in predictive ability over time reveals
that genetic perturbations may affect the dynamics and timing of immune and cancer cell
interactions.

3.2. Explainable AI techniques reveal differences in T cell interactions
with cancer cells under genetic perturbation

To better understand the differences in behavior across genetic perturbations, we applied the
Grad-CAM technique10 to both full- and restricted-time models and testing with held-out
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Fig. 1: SHKO categorizations over time. Each point corresponds to the 50 frame time
bucket starting at that frame (time). A total of 200 images per time bucket are categorized.

Predicted SHKO Predicted CUL5KO Predicted RASA2KO Recall

True SHKO 184 9 6 92%
True CUL5KO 1 198 1 99%
True RAS2KO 41 1 154 77%

Precision 81% 95% 86 %

Table 2: Limited time (frames 200 - 250) test confusion matrix. Rows represent true
labels for the three experiment types; columns represent predicted labels. The last row and
column of the matrix are the precision and recall, respectively, for each experiment class label.

Fig. 2: Accuracy of the limited-time model across all held-out time points data.
These held-out test accuracy results (y-axis) were aggregated by time (x-axis) into five groups.

validation data. For an individual sample’s prediction, Grad-CAM combines the gradients of
the model’s weight to calculate the influence of each pixel feature to the prediction. These
values generate a “feature importance heatmap” that identifies the most important regions of
an image for classifications.

We analyzed the output of Grad-CAM across different time points and different conditions
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Fig. 3: Grad-CAM importance scores for the limited-time model across condition
and time on held-out images. Frame label indicates both the true label and associated
Grad-CAM class label. The purple areas represent the lowest impact areas, blue represents
the medium impact, and red represents the highest impact. This color gradient is consistent
for all of the Grad-CAM visualizations throughout this paper.

to identify changes recognized by CNN classifiers. For the model trained on all time points, we
observe that Grad-CAM highlights interactions between cancer cells and T cells, focusing its
attention on the cellular aggregates to recognize CUL5KO (Figure 3). In the RASA2KO Grad-
CAM visualizations, on the other hand, the highlighted regions are focused almost exclusively
on the areas between cells and cellular aggregates (Figure 3). Moreover, we observed that
the highlighted regions in the SHKO group seem to be distributed randomLy, but each time
focused on individual cancer cells (Figure 3). These Grad-CAM visualizations suggest specific
characteristics of behavior of each of the three experiments.

We quantified the enrichment of these patterns on a small scale in the three experiments by
manually annotating the number of healthy and interacting T cells in the highlighted regions of
each type on the frame interval 150-160 in the second quadrant from the full time frame model
in the held-out images. Across all three sets of heatmaps, the CUL5KO Grad-CAM heatmap
highlights the interacting cancer cells at a higher rate than the SHKO and RASA2KO Grad-
CAM heatmap (Table 3). This suggests that the difference between CUL5KO and RASA2KO
behavior is that CUL5KO T cells accelerate the rate of cancer cell-T cell interactions and the
formation of T cell aggregates around a cancer cell.

To better understand differences between the full-time and limited-time models, we com-
pared the Grad-CAM visualizations at the same time from the same position. We use to il-
lustrate one input frame from the CUL5KO held-out data at time point 220,880 minutes post
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Genetic perturbation Non-interacting cancer cells Interacting cancer cells

SHKO 10 5
CUL5KO 2 32
RASA2KO 12 7

Table 3: Number of healthy and interacting cancer cells from ten images between frames 150
and 160 highlighted by Grad-CAM on the full time frame model.

Fig. 4: Grad-CAM visualizations of frame 220 of the held out CUL5 images for the 200-249
frame model (left) and full 350 frame model (right).

culture (Figure 4). Both sets of Grad-CAM images focus on interacting cancer cells—which
often appear as large T cell aggregates that hide the seed cancer cell—but the interacting can-
cer cells they highlight are often different ones (Figure 4). The 200-249 frame model focuses
more on regions of the image without aggregates to inform its decision, indicating that overall
T cell/cancer cell coverage is an important signature during this 50-frame time window. Al-
though both visualizations appear to focus on similar proportions of the image, the 200-249
frame model’s heatmap has a larger area of limited attention across the full image (Figure 4).

To more broadly interrogate the influences on the limited-time frame model, we used Grad-
CAM to visualization importance heatmaps across the three different genetic perturbation on
held-out frames (Figure 5). Like the full-time model (Figure 3) the limited-time model focuses
on interacting cancer cells, which we define as T cells adjacent to or overlapping with cancer
cells in the CUL5KO held-out frames. The limited-time model, however, has more diffused
highlighted regions of importance for predicting all three conditions than the full time model,
capturing most of the cells. This suggests that total cell coverage, or the proportion of the
area of the image covered by cells, is a more defining signature of the CUL5KO limited-time
model than the full-time model. When comparing shorter time intervals, CUL5KO can be
characterized by its total cell coverage, but, over longer intervals, the specific interactions
between cells proves to be the most important distinguishing feature.

Taken together, our findings indicate that the model trained on later limited time frames
takes a larger proportion of the image into account when performing classification, whereas the
full model focuses on more limited regions of the image. The greater spread of “attention” and
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Fig. 5: Grad-CAM importance scores for the limited-time model across condition 
and time on held out images. Frame label indicates both the true label and associated 
Grad-CAM class label.

the focus on multiple cancer cells and T cells in the limited-time model suggests that the model 
is effectively counting the number of cells to make a prediction; at limited time points, given 
the known differences in killing progression, this featurization would be effective for separating 
the classes as indicated by the limited-time model’s accuracy. In contrast, the model trained 
on the full data cannot rely on the number of cells to differentiate genetic perturbations, and 
so focuses more on a small number of cell interaction regions to distinguish the knock-outs.

4. Conclusion

Our work analyzes the behaviors of CRISPR-modified TCR T cells interacting with cancer
cells in live-cell imaging studies. Most studies count the total area covered by cancer cells
across time to characterize the cancer cell killing efficacy of the modified T cells, ignoring the
behavior changes in T cell, cancer cells, and their interactions. We identified specific changes
in cell behavior across the three experiment types by using Grad-CAM,10 a visual explainable
AI technique, to understand how a deep learning classifier would differentiate the experimental
conditions from live-cell images, highlighting the behavioral changes in modified T cells beyond
simple cancer cell death rate.

By using Grad-CAM to analyze classification models trained on three types of modified
TCR T cells, we found that the amount of T cell or cancer cell coverage differentiates CUL5KO
and RASA2KO modified T cells when comparing similar time points. We showed that cell
aggregation behavior is a reliable differentiating characteristic to distinguish CUL5KO ex-
periments from the others, and these CUL5KO experiments tend to have consistent T cell
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aggregates around cancer cells. We showed that larger empty spaces, suggesting a combi-
nation of larger (and fewer) cellular aggregates plus better cancer cell killing, distinguishes
RASA2KO experiments from the other two experiments. We found that the safe harbor ex-
periment is defined by no cellular aggregates and substantial coverage of cancer cells, with
the T cells both failing to latch on to the cancer cells and furthermore failing to stop their
proliferation. We note that coverage plots alone miss these important behavioral signatures.

Our study has a number of limitations, including considering only a single T cell donor and
cancer cell line, three genetic modifications, limited replicates, and limited variable titrations
of cancer cells to modified T cells. Emerging architectures and pretrained models may improve
accuracy relative to the ResNet architecture used here. The importance maps from Grad-CAM
are coarse regions over the image, and sometimes the difference between knockouts could
be hard to qualitatively observe. Grad-CAM is one of many interpretation approaches, and
alternatives such as saliency maps or Shapley Additive Explanations may provide different
features of interest. The lack of differences between knockouts may also be an interesting
indication of a lack of distinct mechanism changes that would limit downstream efficacy.

However, as a proof of concept, this analysis pipeline for future live-cell imaging experi-
ments will open the door to a more sophisticated interpretation of modified T cell behaviors.
We found that existing tools and pretrained image models like ImageNet are effective at clas-
sifying biological image samples when fine tuned using live-cell imaging frames. We observed
that fine tuning on frames from a wide stretch of time increases the models’ attention on
individual cellular dynamics, while fine tuning on short time samples later in the experiment
will use more characteristic image features for classification.

Overall, we demonstrated that explainable AI techniques are a practical tool for interrogat-
ing and understanding biological dynamics from live-cell image, and we developed a framework
for studying these dynamics in general live-cell imaging data. Future work pushes our methods
towards the clinic. By characterizing the complex behaviors of these possible T cell modifica-
tions, we hope to more rapidly identify T cell therapies for broad ranges of cancers, both liquid
and solid. Our interpretable classifiers specifically can be used by decision-making AI methods
to prioritize specific T cell therapies for new cancer patients by predicting the response of that
individual tumor to each type of therapy, and selecting the most effective therapy.
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