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Precision medicine significantly enhances patients prognosis, offering personalized treat-
ments. Particularly for metastatic cancer, incorporating primary tumor location into the
diagnostic process greatly improves survival rates. However, traditional methods rely on hu-
man expertise, requiring substantial time and financial resources. To address this challenge,
Machine Learning (ML) and Deep Learning (DL) have proven particularly effective. Yet,
their application to medical data, especially genomic data, must consider and encompass
privacy due to the highly sensitive nature of data. In this paper, we propose OGHE, a convo-
lutional neural network-based approach for privacy-preserving cancer classification designed
to exploit spatial patterns in genomic data, while maintaining confidentiality by means of
Homomorphic Encryption (HE). This encryption scheme allows the processing directly on
encrypted data, guaranteeing its confidentiality during the entire computation. The design
of OGHE is specific for privacy-preserving applications, taking into account HE limitations
from the outset, and introducing an efficient packing mechanism to minimize the computa-
tional overhead introduced by HE. Additionally, OGHE relies on a novel feature selection
method, VarScout, designed to extract the most significant features through clustering and
occurrence analysis, while preserving inherent spatial patterns. Coupled with VarScout,
OGHE has been compared with existing privacy-preserving solutions for encrypted cancer
classification on the iDash 2020 dataset, demonstrating their effectiveness in providing ac-
curate privacy-preserving cancer classification, and reducing latency thanks to our packing
mechanism. The code is released to the scientific community.

Keywords: Computational genomics; Deep Learning; Homomorphic encryption; Privacy.

© 2024 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.

Pacific Symposium on Biocomputing 2025

565



1. Introduction

Precision medicine is fundamentally changing the landscape of cancer treatment by tailoring
medical care to individual genetic profiles, enhancing the efficacy of therapies.1 This person-
alized approach not only targets treatments more effectively but also significantly improves
patient outcomes and survival rates.2 Nowadays, however, precision medicine mainly relies on
human-performed processes, which require high expertise, lots of time, and finances.3 From
this perspective, the advancement of Machine Learning (ML) and Deep Learning (DL) tech-
niques offers researchers the potential to improve cancer classification accuracy, particularly
in identifying primary tumor sites from patients’ genomic data,4 which can lead to more pre-
cise and effective treatment strategies.5 Medical clinics and hospitals often lack expertise in
ML and DL and may struggle to afford the necessary computing infrastructure. To address
this issue, third-party as-a-service solutions have emerged as a promising alternative.6 How-
ever, exposing medical and personal data to third-party providers raises significant privacy
concerns, especially when dealing with sensitive genomic information.7 This vulnerability is a
major obstacle to the widespread adoption of ML and DL-as-a-service (DLaaS) in healthcare.

In recent years, the application of Homomorphic Encryption (HE) within the DLaaS frame-
work has gained considerable momentum in addressing privacy concerns. HE is an encryption
method that encrypts data using a public key, making it unreadable to unauthorized entities.
Only the holder of the corresponding private key can decrypt and access the original informa-
tion. A key advantage of HE is its ability to perform computations on encrypted data without
requiring decryption.8 This enables the encrypted processing of patient genomic data by third-
party ML and DL algorithms while maintaining data confidentiality, as the raw genomic data
remains encrypted and inaccessible during analysis.9

With this method, healthcare institutions encrypt genomic data before transmitting it to
a third-party ML and DL service, ensuring that the service provider remains unaware of the
underlying data during processing. The service provider receives the keys needed to perform
computations on encrypted data, and returns the encrypted results to the client for decryption.
This privacy-preserving computation as-a-service not only addresses the shortage of ML and
DL expertise while reducing costs, but also offers scalability and flexibility to meet the growing
computational needs of medical research, data analysis, and clinical decision-making. In recent
years, numerous privacy-preserving solutions have been developed for various healthcare ap-
plications, leveraging HE to protect sensitive data during analysis. For instance, studies have
demonstrated the use of HE in securely processing medical images,10 and conducting genome-
wide association studies.11 These advancements highlight the potential of HE to maintain data
confidentiality while enabling valuable insights in the healthcare domain.

Nonetheless, the task of cancer classification on encrypted genomic data is quite new. Ex-
isting solutions have explored ML techniques such as Logistic Regressions (LR)12 and Shallow
Neural Networks (SNN).13 Interestingly, despite their effectiveness in genomics,14 Convolu-
tional Neural Networks (CNNs) have received little attention due to their developmental
complexity in the HE framework. Indeed, HE poses considerable limitations on the type and
number of operations that can be performed on encrypted data. Since only addition and mul-
tiplication are supported by HE, several layers and activation functions commonly used in DL
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models cannot be directly computed on encrypted inputs. Additionally, HE constraints the
number of consecutive encrypted multiplications, thereby limiting the depth of DL models.15

In this perspective, our work introduces Oncological Genomic analysis over HE and CNN
(OGHE), a CNN-based approach for cancer classification designed to operate on encrypted
genomic data. Featuring parallel convolutional layers, OGHE separately analyzes Single Nu-
cleotide Variants (SNVs) and Copy Number Variations (CNVs) to enhance accuracy and
effectiveness. Additionally, OGHE employs a novel feature selection method, Variant Scout
(VarScout), to extract the most significant features while preserving the inherent spatial pat-
terns in genomic data. This approach effectively complements the characteristics of OGHE
convolutional layers, while maintaining compatibility with HE limitations.

Overall, this work introduces the following innovations: (1) OGHE, a privacy-preserving
CNN that incorporates parallel one-dimensional (1D) convolutional layers to independently
capture SNVs and CNVs spatial patterns, as they provide distinct and uncorrelated informa-
tion; (2) a novel feature selection technique, VarScout, which uses clustering and mutation
frequency to identify key SNVs and CNVs, thereby reducing computational complexity; and
(3) a novel packing mechanism to efficiently encrypt data, weights, and biases into ciphertexts,
resulting in high computational performance and reduced latency. The efficacy and efficiency
of OGHE and VarScout have been evaluated on the iDASH2020 competition dataset.16 Com-
pared to State-of-The-Art (SoTA) privacy-preserving cancer classification solutions, our ap-
proach achieves an accuracy improvement of 0.8% while reducing the inference time per sample
to less than 30 seconds. The code has been made available to the scientific community.a

The paper is organized as follows. Sec. 2 presents the related literature. The background is
given in Sec. 3. OGHE and VarScout are described in Sec. 4, whereas the experimental results
are presented in Sec. 5. Conclusions are finally drawn in Sec. 6.

2. Related Works

In this section, we review the literature on cancer classification task on genomic data. We first
discuss solutions for processing plain data and then those for encrypted data.

Over the past few years, both supervised and unsupervised learning techniques have been
extensively explored for cancer classification based on genomic data.17,18 However, the prefer-
ence has leaned towards supervised classifiers as they result more reliable, interpretable, and
precise. CNNs have largely conquered the genomic scenario thanks to their ability to extract
spatial patterns.14 For example, AlShibli et al.19 proposed ResCNN6, a 6-layers Residual-CNN,
to perform CNV-based cancer classification over six tumor types.20 The architecture encom-
passed four 2D convolutional layers coupled with MaxPooling to extract relevant features,
while two fully connected layers are exploited for classification. ResCNN6 presented shortcut
connections to ensure the lowest training error possible by avoiding one or more convolutional
layers. On the same task, Chen et al.21 explored a simpler CNN architecture composed of two
1D convolutional layers. Each convolution is followed by MaxPooling and batch normalization,
while a fully connected layer ended the processing pipeline. Despite their effectiveness, how-

aCode is available at https://github.com/AI-Tech-Research-Lab/OGHE.git.
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ever, the reported solutions are not feasible for privacy-preserving computation based on HE
due to the inability to compute several layers and activation functions on encrypted inputs. HE
imposes stringent limitations, permitting only linear functions and operations. Additionally,
the depth of these solutions would surpass the number of consecutive multiplications allowed
by HE constraints, potentially leading to data corruption and unreliability.22

Due to the aforementioned HE limitations, ML solutions are still preferred over DL ones
in privacy-preserving computation. In 2020, iDASH16 competition challenged its competitors
with the development of a cloud-based solution for privacy-preserving classification of eleven
cancer locations exploiting genetic mutations and HE. Among the presented solutions, Sarkar
et al.12 developed a logistic regression approach, incorporating a feature engineering strategy
to encode somatic mutations based on biological intuition and statistical tests. They advanced
a technique to reduce the feature space from over 50, 000 features to 43, 000, implementing a
HE-based model through an optimized matrix multiplication algorithm. Differently, Mağara
et al.23 investigated two ML algorithms, i.e., Support Vector Machine (SVM) and XGboost.
Given that XGBoost internally utilizes comparisons not supported by the HE scheme, an
efficient encoding method for encrypted comparison operations was devised for inference.
Moreover, Hong et al.13 proposed a Shallow Neural Network (SNN) consisting of one hidden
layer with 64 nodes and a linear activation function. In the preprocessing of the input genomic
data, the feature selection step incorporated both clustering and data filtering methods. Lastly,
in 2024, Song et al.24 introduced ReActHE, a family of CNNs characterized by a novel type
of activation layer, i.e., the Residue activation layer, and a scaled power activation function.
In particular, by selecting the 1, 000 most significant features by means of a L1 normalized
logistic regression, they outperformed alternative privacy-preserving ML solutions, achieving
low approximation errors in the cancer classification task.

Differently from the existing literature, our solution proposes two key aspects which are
fundamental for privacy-preserving cancer classification. First, VarScout selects the most rep-
resentative features in an effective way, helping in reducing input and model dimensions. Sec-
ond, OGHE exploits spatial information from genomic data by employing only HE-compliant
operations to allow encrypted computation.

3. Background

This section will present the basics needed to understand OGHE and VarScout implementa-
tion. Sec. 3.1 will provide a brief overview of the HE scheme employed, while Sec. 3.2 will
present the characteristics of the genetic mutations analyzed.

3.1. Homomorphic Encryption

HE is a family of encryption schemes that enables a set of operations to be performed directly
on encrypted data.8 Mathematically, two functions E(kp, ·), D(ks, ·) are said to be homomorphic
with respect to a set of functions F if, for any f ∈ F , a function g can be found that:

f(m) = D(ks, g(E(kp,m))) (1)

for any set of input m.25 In particular, E(kp, ·) and D(ks, ·) represent the encryption and
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decryption functions, respectively, whereas kp denotes the public key and ks the secret key.
The ability of HE to provide encrypted operations relies on the maintenance of the datum
algebraic structure during the processing pipeline.26 In this way, the result obtained from
ciphertext computation is guaranteed to match the one from the same operation in plaintext.
In this study, we adopted the Cheon–Kim–Kim–Song (CKKS) scheme,27 which is based on
the Ring Learning With Errors (RLWE) problem,28 a computational problem commonly used
in quantum-resistant cryptography.29 The CKKS scheme supports encrypted additions and
multiplications between real values. More in detail, it belongs to the family of leveled HE
schemes, i.e., schemes that allow only a finite number of consecutive encrypted operations
to be performed before the information is lost. This limit is called scheme level, denoted by
l, and it is due to noise injection performed by the scheme itself in order to guarantee the
probabilistic encryption properties.30 In CKKS scheme, the algebraic structure of plaintexts
and ciphertexts is defined through a set of encryption parameters Θ = {N, q,∆}, where N is
the polynomial modulus, q is the list of l + 2 coefficient modulus, and ∆ is the scaling factor.
More in detail, plaintexts are in the polynomial ring R = Z[X]/(XN +1), while ciphertexts are
in the polynomial ring Rq = Zq0[X]/(XN + 1).

When dealing with the CKKS scheme, two key factors must be considered. The former
deals with the choice of the encryption parameters Θ, defining the security level, which in this
work is set to 128 bit, the polynomial order, and the encoding precision. They represent a trade-
off between the scheme level l and the overhead added with respect to plain computation. The
latter is called batching technique: it enables parallel processing through Single Instruction,
Multiple Data (SIMD) operations.27 By using batching, a single ciphertext can store up to N/2

values, reducing the computational overhead both in terms of time and memory requirements.
The adopted CKKS scheme supports two main operations. Let a = [a0, a1, . . . , an] and

b = [b0, b1, . . . , bn] be two encrypted CKKS vectors. Then, the encrypted element-wise addition
can be defined as follows:

A+B = [a0 + b0, a1 + b1, . . . , an + bn]. (2)

Conversely, the encrypted element-wise product is defined as:

A ∗B = [a0 ∗ b0, a1 ∗ b1, . . . , an ∗ bn]. (3)

Additionally, matrices can be represented in ciphertext as their flattened forms. Aggregate
operations that perform homomorphic sums across specific dimensions of encrypted data can
be defined. Let C be an encrypted and flattened matrix with dimensions M × N . The sum
over columns is then expressed as:

S =

 N∑
j=1

Ci,j

M

i=1

(4)

where S is an encrypted matrix containing the row sums of C, repeated to match the dimen-
sions of the input matrix. Similarly, this operation can be applied to the other dimension.
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3.2. Single Nucleotide Variants and Copy Number Variations

Information from SNVs and CNVs is vital in the diagnostic process of metastatic cancer, as
it helps in identifying the origin of the primary tumor mass. Being common for a certain
population, SNVs, which involve the alteration of a single nucleotide in DNA strands, serve as
biomarkers for specific diseases. When occurring in protein-coding regions, SNVs can lead to
missense variations, i.e., the substitution of an amino acid altering protein structure and func-
tion, and nonsense mutations, i.e., the premature truncation of the protein-coding process.31

SNVs are categorized as [LOW, MODERATE, MODIFIER, HIGH] based on their impact on
disease onset, as determined by the Variant Effect Predictor software.

Conversely, CNVs are structural variations involving the rearrangement of more than 50
base pairs in the genome. Entire genes can be altered in the number of copies, compromising
normal gene expression levels and affecting critical cellular processes like cell cycle regulation,
apoptosis, and cell signaling. Thus, CNVs are strongly associated with genetic disorders and
complex diseases such as cancer.32 In this work, CNVs are represented by five mutation levels,
i.e., {0.0,±1.0,±2.0}, where the absolute value indicates the number of strands involved, while
the sign denotes either a positive duplication or a negative deletion. This information is directly
inferred from the Copy Number Segmentations generated by the ASCAT software.

4. Proposed Solution

This section details the proposed solution, composed of VarScout and OGHE, designed to
address the considered primary tumor location problem, formalized as follows. Let XCNV and
XSNV be two vectors of size LCNV and LSNV , respectively. We define the primary tumor
location as ŷ = argmaxi yi, where

y = φ(XCNV , XSNV ) ∈ RC (5)

is the output vector, C is the number of classes, and φ(·) is the model. In the rest of the section,
we will consider the encrypted version of this problem. In particular, Sec. 4.1 introduces
VarScout, our proposed feature selection method designed to reduce the CNV and SNV feature
space dimension, while Sec. 4.2 details OGHE, the model architecture specifically designed to
provide encrypted primary tumor classification on encrypted SNV and CNV inputs.

4.1. VarScout method

VarScout has been designed to reduce CNV and SNV feature space dimension while keeping
the highest data representation, which is crucial to design OGHE being HE compliant. In-
spired by Hong et al.,13 VarScout aims at enhancing OGHE accuracy by prioritizing the most
impactful mutations while maintaining typical spatial patterns.

After organizing CNV and SNV mutations in chromosomal order, agglomerative clus-
ter analysis is employed for CNV filtering to eliminate redundant information. Specifically,
our method comprises three main steps: (1) similarity computation between adjacent genes
(gi, gi+1) through the Hamming distance d, i.e., d(gi, gi+1), for each gene gi in the original
dataset; (2) formation of clusters Ol such that Ol = {gi |min(d(gi, gi+1))}, i.e., genes character-
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ized by the least distance are chosen to form a cluster; and (3) selection of the first in order
gene gi to represent the cluster l. These steps are repeated until l reaches LCNV .

Conversely, SNVs are numerically encoded within the range {0.0, 0.20, 0.50, 0.90, 1.0}, as
proposed by Hong et al.,13 to denote the impact of the mutation on the disease insurgence.
In particular, 0.0 represents the absence of genetic alteration, whereas 1.0 denotes the highest
level of influence. To reduce SNV feature space, our feature selection method is based on
mutation occurrences across different cancer types. Frequencies are calculated based on the
impact of genetic alterations, defined as Fj =

∑
i fij, for i = [1, ..., |Zc|]. More specifically, Fj

denotes the weighted frequency of occurrence of a gene j within a sub-population Zc = {x | y =

c} ∀c = [1, . . . , C] characterized by a specific cancer class y, and fij represents the impact of the
j-th gene for each individual sample i. The process ranks mutations by sequentially adding
the most recurrent gene for each tumor type to the feature space until the desired feature
dimension LSNV is reached.

4.2. OGHE Architecture

To exploit spatial patterns in genomic data while addressing HE constraints, we propose
OGHE. OGHE takes as input VarScout-selected CNV and SNV features encoded as two
separate ciphertexts, namely X̃CNV and X̃SNV , and outputs an encrypted vector Ỹpred of length

C. Once decrypted, the output Ypred = D(ks, Ỹpred), where D(ks, ·) is the decryption function
described in Sec. 3, reveals the predicted cancer class, identified by the index of the highest
value in Ypred. OGHE architecture is designed to work within HE constraints while maintaining
high accuracy and computational performance. The training of OGHE was performed on plain
data, although it is specifically designed for encrypted inference.

As shown in Fig. 1, OGHE is a shallow CNN composed of two parallel 1D convolutional
layers and a fully connected layer. Parallel convolutions are chosen to separate CNV and SNV
information, ensuring independent processing of uncorrelated data until the fully connected
layer. In its training configuration, a square activation function was chosen as commonly used
in the privacy-preserving DL15 framework, and a Spatial-Dropout layer is incorporated to
mitigate the risk of overfitting. The feature maps resulting from the convolutional layers, i.e.,
Yconvh,CNV

and Yconvh,SNV
, for each kernel h = [1, . . . ,H], are then concatenated and passed to

the flatten function. A fully connected layer ends the processing pipeline to provide the output
vector Ypred, where the index of the highest value indicates the predicted primary tumor mass
location. This strategic design ensures compatibility with the limitations posed by HE while
exploiting the available genetic information for accurate cancer classification.

Conversely, OGHE encrypted processing is designed to provide optimal computational per-
formance by efficiently managing the ciphertext space through a well-defined packing mech-
anism. By strategically organizing data within ciphertexts, our approach enables efficient
encrypted computations, and significantly enhances the performance of the network. OGHE
includes Encrypted Convolutional Blocks (Sec. 4.2.1) and an Encrypted Fully Connected Block
(Sec. 4.2.2). To streamline the notation we will consider the case where both the input data
and OGHE model are encrypted. However, the following formulations can easily be extended
to the scenario where the model is kept unencrypted by the service provider.
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Encrypted Convolutional Block Encrypted Fully Connected Block

SNV

Fig. 1. OGHE encrypted pipeline. Each sample, composed of XCNV and XSNV , is encoded and
encrypted into X̃SNV and X̃CNV , respectively, before being processed by the Encrypted Convolutional
Block and the Encrypted Fully Connected Block.

4.2.1. Encrypted Convolutional Block

This block proposes a 1D re-elaboration of the im2col method33 to facilitate the computation
of CNV and SNV convolutional layers. In our approach, data, weights, and feature maps are
efficiently packed to be encrypted into single ciphertexts, to maximize computational efficiency.

Let K = [k1, . . . , kD] denote a 1D convolutional kernel of dimension D and stride S, and
let X = [x1, . . . , xLx

] represent the 1D input vector. Our method encodes the input X into a
matrix X̃ of size Ly × V , built as follows:

X̃ =


x1 x2 · · · xD−1 xD 0 · · · 0

x(S+1) x(S+1)+1 · · · x(S+1)+D−1 x(S+1)+D 0 · · · 0

x(2S+1) x(2S+1)+1 · · · x(2S+1)+D−1 x(2S+1)+D 0 · · · 0
...

x(iS+1) x(iS+1)+1 · · · x(iS+1)+D−1 x(iS+1)+D 0 · · · 0

 . (6)

Similarly, the convolutional kernel K is encoded into K̃, a Ly × V matrix where each row
contains a copy of K:

K̃ =


k1 k2 · · · kD−1 kD 0 · · · 0
k1 k2 · · · kD−1 kD 0 · · · 0
k1 k2 · · · kD−1 kD 0 · · · 0
...
k1 k2 · · · kD−1 kD 0 · · · 0

 . (7)

For computational reasons, both X̃ and K̃ are padded with zeros at the end of each row to
maintain a power of 2 number of columns V , which will be set to V = 2⌈log2(max(D,C))⌉. Thus,
X̃ and K̃ share the same shape Ly × V , where

Ly =

⌊
Lx −D

S

⌋
+ 1, (8)

being Lx the input length, D the kernel dimension, S the stride, and C the number of classes.
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The matrices X̃, K̃ are then flattened and encrypted into the ciphertexts X̃ and K̃, re-
spectively. This encoding ensures that both the input vector X and the convolutional kernel
K are appropriately formatted for efficient encrypted computation.

Computing the h-th convolution Ỹconvh
is reduced to a single Hadamard multiplication

between ciphertexts, followed by a sum over the columns, as described in Eq. (4):

Ỹconvh
=

 V∑
j=1

(X̃h · K̃h)i,j

Ly

i=1

(9)

where i denotes the i-th row, j the j-th column, and Ly and V the dimensions of the output
Ỹconvh

. This operation is repeated for each of the h = [1, . . . ,H] kernels of the convolutional

block. The resulting ciphertext Ỹconvh
will be encoded as:

Ỹconvh
=


y1 y1 · · · y1 y1 y1 · · · y1
y2 y2 · · · y2 y2 y2 · · · y2
y3 y3 · · · y3 y3 y3 · · · y3
...

yLy
yLy

· · · yLy
yLy

yLy
· · · yLy

 (10)

in its flattened form, where yi is the encrypted result of a single window convolution. Lastly,

the bias is encoded to match Ỹconvh
packing, replicated Ly ∗ V times, and added to it.

It is worth noting that in OGHE, CNV and SNV inputs are processed in separate, parallel
1D convolutional layers. Eq. (9) is effectively used to compute Encrypted Convolutions for
each kernel and parallel branch, after which the square activation is applied.

4.2.2. Encrypted Fully Connected Block

The output of each parallel convolutional branch is subsequently forwarded through the final
fully connected layer. However, since CKKS ciphertexts cannot be concatenated, the operation
has to be decomposed. The weight matrix W associated to the layer is split into 2H sub-
matrices Wh, which are then flattened. Specifically, each Wh represents the portion of weights
W that has to be multiplied by the h-th output channel per each parallel branch. This way,
2H reduced fully connected layers can be performed to compute the output:

Ỹlinh,CNV
=

 Ly∑
i=1

(Ỹconvh,CNV
· W̃h,CNV )i,j

V

j=1

, Ỹlinh,SNV
=

 Ly∑
i=1

(Ỹconvh,SNV
· W̃h,SNV )i,j

V

j=1

. (11)

A Hadamard multiplication followed by a summation over the rows, described in Eq.
(4), effectively emulates a vector-matrix multiplication. All the 2H values are then summed
together along with the bias vector to provide the final prediction Ỹpred, which will be encoded
having the resulting vector repeated along the ciphertext.

Lastly, by multiplying the output Ỹpred by a binary mask, the output vector Ypred will
result in a single prediction vector of size C, where each element corresponds to a class. After
decrypting with the secret key, i.e., D(ks, ·), the index of the element with the highest value
will correspond to OGHE prediction.
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5. Experimental Results

The experimental campaign is organized into two parts. First, Sec. 5.2 compares OGHE to
SoTA solutions in terms of accuracy, micro Area Under the Curve (mAUC), and computa-
tional performance for privacy-preserving cancer classification tasks. Then, Sec. 5.3 shows the
effectiveness of OGHE and VarScout when compared to Hong et al.13 SNN and a baseline
model, i.e., a single fully connected layer network, referred to as FCM. Our solution, imple-
mented using OpenFHE-python34 library, has been tested on a workstation equipped with 2

Intel Xeon Gold 5318 S CPUs and 384GBs of RAM.

5.1. Procedure

To evaluate stability and consistency, OGHE and VarScout were tested alongside the literature
on the iDASH2020 dataset,16 sourced from The Cancer Genome Atlas (TCGA). This dataset
includes 3, 622 samples with CNV and SNV information for 25, 128 genes, and eleven cancer
classes representing the primary tumor mass location.

Moreover, for the in-depth comparison of Sec. 5.3, we employed a 5-fold cross-validation
technique to evaluate all the considered models. For each fold, we allocated data in a 7:1:2
ratio for training, validation, and testing, respectively. We also employed a hyperparameter
selection based on the validation loss for all the considered models. In particular, we optimized
the hyperparameters for OGHE considering the following ranges: kernel sizes of {16, 32, 64},
strides of {4, 8, 16}, and number of kernels {4, 8, 16}, along with activation functions either
linear or square. The spatial dropout rate has been fixed to 0.5. We fixed an Adam optimizer
with a weight decay of 0.0001, learning rate of 0.001 and cosine annealing, and batch size of
16. Instead, for the SNN13 and FCM, the learning rate was evaluated in {0.001, 0.0001}, the
batch size in {4, 8, 16, 32}, and the weight decay of the Adam optimizer in {0, 0.0001, 0.0005}.
All the solutions were trained for 200 epochs using a weighted cross-entropy loss function,
whose weights are inversely proportional to class frequencies.

For the encrypted computations, we employed the following CKKS encryption parameters:
Θ =

{
N = 32, 768, q = [60, 50, 50, 50, 50, 50, 60],∆ = 250

}
, yielding results that are consistent with

those obtained from processing in plaintext, and ensuring a 128-bits security level.35

5.2. Comparison with SoTA Solutions

As a first analysis, OGHE accuracy was compared to privacy-preserving cancer classification
SoTA solutions. Note that we compared OGHE only to models specifically designed for HE
applications, as they share the same characteristics and limitations.

As demonstrated in Table 1, our solution outscores all other models in the literature in
terms of accuracy, highlighting the exceptional capabilities of OGHE and VarScout. This ac-
curacy improvement is attributed to the simultaneous learning from multiple sources, namely
CNV and SNV, which enhances the model’s robustness to variations and noise, thereby in-
creasing its reliability. Nonetheless, OGHE shows a slight decrease in mAUC, which can be
attributed to a more distributed error among the classes.

Furthermore, the computational performance of OGHE has been assessed in comparison
to DL models in literature, as shown in Table 2. Since ReActHE24 was evaluated in its orig-
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Table 1. Accuracy and mAUC of our proposed solution compared to the existing
literature.

Model name Model class Accuracy mAUC

Mağara et al.23 XGBoost XGBoost − 93.80%
Sarkar et al.12 LR LR 83.61% 98.00%
Song et al.24 ReActHE CNN 83.82% −
Hong et al.13 SNN NN 85.15% 98.82%
Ours OGHE CNN 85.94% 98.44%

Table 2. Comparison of computational performance with respect to FCM and SNN13 in terms
of encryption, computation, and decryption time, and in terms of latency per sample (L1), and
in the encrypted inference of 100 samples (L100). All values are in seconds.

Model name Enc[s] Comp[s] Dec[s] L1[s] L100[s]

Hong et al.13 SNN 13.50 227.20 0.10 240.80 −
Song et al.24 ReActHE − − − − 685.35
Ours OGHE 2.97 23.17 0.013 27.59 190.02

inal work by encrypting the model weights, the weights and biases of OGHE have also been
encrypted to ensure a fair comparison. Additionally, single-sample inference utilized only 4

threads, whereas for the inference of 100 samples we limited our machine to use 40 threads, to
align with the ReActHE24 experimental setting. Table 2 proves the efficiency of our method
both in single-sample and high-throughput inference. Notably, the computational times are
the same for all the feature sizes up to [1024, 2286], given that the inputs, weights, and feature
maps fit into a single ciphertext. For larger models, two ciphertexts must be used, leading to
a slight increase in latency. However, the performance remains highly competitive, outper-
forming current state-of-the-art solutions. Additionally, the potential for further optimization
through parallelization ensures scalability and efficiency in future implementations. Moreover,
OGHE encryption time encompasses both model and data encryption. However, model en-
cryption takes 2.88 seconds, making it the most time-consuming aspect of the encryption
process. This evaluation considers the worst-case scenario where both the model and data are
encrypted. If the model were in plaintext, a significant amount of time (around 15%) would
be saved, highlighting the efficiency potential in less stringent encryption scenarios.

5.3. VarScout and OGHE evaluation

The aim of this part is to rigorously evaluate the effectiveness of VarScout and OGHE. To do
so, we used the preprocessing method of Hong et al.13 as feature extractor for OGHE, FCM,
and the SoTA SNN model.13 Subsequently, we applied our VarScout preprocessing method to
our solution to determine if VarScout effectively enhances OGHE’s performance. Note that
Song et al.24 is not included in this comparison, as they did not release the implementation.

Initially, we applied Hong et al.13 feature selection method to all the models under consid-
eration. The models were then tested with different input sizes, reflecting the number of CNV
and SNV features after preprocessing. Along with the size [709, 1198], identified by Hong et al.13
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Fig. 2. Accuracy and MicroAUC boxplots of the considered models, for different input dimensions,
i.e., the number of CNV and SNV features, respectively. The model names are followed by the
preprocessing feature selection procedure in parenthesis. They show the metrics over 10 runs of the
5-fold cross validation.

Fig. 3. Accuracy and MicroAUC boxplots of OGHE with different feature selection methods, for
different input dimensions, i.e., the number of CNV and SNV features, respectively. The model names
are followed by the preprocessing feature selection procedure in parenthesis. They show the metrics
over 10 runs of the 5-fold cross validation.
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as optimal, we also evaluated the input sizes [258, 582], [514, 1152], [1024, 2286], and [2031, 4613].
Fig. 2 demonstrates the effectiveness of OGHE, showing that it outperforms both FCM

and SNN.13 OGHE shows greater improvement over the other models as input feature size
increases. Achieving a higher median accuracy with a narrower interquartile range, OGHE
confirms that genomic data contains useful spatial and hierarchical information, effectively
captured by the convolutional layers. Moreover, OGHE shows reduced variance and a fewer
outliers across all input sizes when compared to the SNN,13 indicating its robustness to vari-
ations in the input data and parameter initialization when dealing with complex tasks.

Furthermore, the statistical difference between SNN13 and OGHE was evaluated using the
McNemar-Bowker36 test when both models were provided with inputs of size [1024, 2286] as it
ensures optimal performance for both models. The comparison was based on the run providing
the highest test accuracy for each fold of the cross validation. The test indicated a statistically
significant difference at a 5% confidence level between OGHE and the SNN13 in four out of
five folds, confirming the improvement our approach provides over existing literature.

Further improvements rise from the introduction of VarScout as feature selection method.
To demonstrate its effectiveness, OGHE integrated with VarScout was compared to OGHE
using the feature selection method proposed by Hong et al.13 Fig. 3 shows that, for smaller
input sizes, the model trained on VarScout-extracted features outperforms the one trained
with Hong et al.13 method, demonstrating that our feature selection method is superior in
capturing spatial patterns and extracting the most important features first. This characteristic
helps in maintaining a smaller network without sacrificing performance. Specifically, reducing
the feature space to [514, 1152], which is half the size of the configuration providing the best
performance, results in only a 0.7% loss in accuracy. This is a key aspect when dealing with
HE computations as it allows the use of ciphertexts characterized by smaller polynomial rings,
resulting in a significant reduction in memory footprint and computation time.

6. Conclusion

This work proposes OGHE, a HE-friendly CNN for privacy-preserving cancer classification,
and VarScout, a preprocessing method designed to maximize OGHE performance. OGHE
architecture exploits spatial correlations in genomic data, separately processing the most rele-
vant SNVs and CNVs extracted by VarScout, while preserving their spatial patterns. Together,
these techniques achieve SoTA performance in encrypted cancer classification.

Despite advancements in privacy-preserving computing, HE introduces significant limi-
tations in Artificial Intelligence applications, particularly regarding reduced computational
efficiency. Future research will focus on minimizing the computational overhead and develop-
ing encrypted training, enabling researchers to analyze genomic data securely while preserving
privacy, unlocking new possibilities for medical research and discovery.

Additionally, leveraging Neural Architecture Search (NAS) to optimize OGHE’s architec-
ture under HE constraints could further enhance its performance by automating the search
for optimal architectures. Lastly, the release of new datasets will enable further validation and
refinement of OGHE, expanding its potential applications.
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