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This study investigates the potential of using synthetic text to augment training data for
Natural Language Processing (NLP) models, specifically within the context of peer support
tools. We surveyed 22 participants—13 professional peer supporters and 9 AI-proficient in-
dividuals—tasked with distinguishing between AI-generated and human-written sentences.
Using signal detection theory and confidence-based metrics, we evaluated the accuracy and
confidence levels of both groups. The results show no significant differences in rater agree-
ment between the two groups (p = 0.116), with overall classification accuracy falling below
chance levels (mean accuracy = 43.10%, p < 0.001). Both groups exhibited a tendency to
misclassify low-fidelity sentences as AI-generated, with peer supporters showing a signifi-
cant bias (p = 0.007). Further analysis revealed a significant negative correlation between
errors and confidence among AI-proficient raters (r = -0.429, p < 0.001), suggesting that as
their confidence increased, their error rates decreased. Our findings support the feasibility
of using synthetic text to mimic human communication, with important implications for
improving the fidelity of peer support interventions through NLP model development.
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1. Introduction

Peer support specialists play a crucial role in the mental health care system.1–4 These individ-
uals, who have lived experiences of mental health conditions, provide emotional, social, and
practical assistance to others facing similar challenges. The peer support movement has grown
significantly, with peer support specialists becoming an integral part of mental health services
due to their ability to engage and support individuals in ways that complement traditional
clinical interventions.1–4 This form of support is particularly important for adults with serious
mental illnesses, who often face high rates of morbidity and reduced life expectancy due to
poorly managed health conditions.5

Despite the proven benefits of peer support,3,4,6 there is a gap in tools that can assist peer
supporters in delivering consistent and high-quality care. An ideal tool would not only aid
in real-time fidelity monitoring but also enhance the delivery of evidence-based practices.7,8

Kadakia et al’s9,10 prior work has shown promise in this area, utilizing a deep learning model
trained on data from both recorded peer support conversations and Reddit to classify high-
fidelity peer support techniques. This approach demonstrated that natural language processing
(NLP) could be used to scale and ensure the fidelity of digital peer support interventions.

It has previously been established that improving data quality and quantity is a critical
step in improving deep learning model accuracy, particularly for NLP models.11,12 However,
in our application, accessing mental health data is often difficult, and transcription of in-
teractions can be labor-intensive and prone to errors.13–15 Furthermore, deep learning NLP
algorithms typically require large amounts of high-quality data to perform optimally.16,17 Pre-
viously, researchers have demonstrated that LLM generated text can be used to improve the
performance of NLP-related tasks, including text classification.18–20 Hence, we hypothesize
that large language models (LLMs) can be used to generate synthetic data that closely mimic
real peer support mental health sessions, thereby enhancing the fidelity classification of peer
support interventions.

In this study, we seek to demonstrate the feasibility of using synthetic data to mimic
human-written content effectively in the peer-supporter context. We also aim to validate
that peer supporters, as well as individuals who are professionally engaged in working with
LLMs (dubbed AI-proficient non-peer supporters) struggle to reliably distinguish between
LLM-generated sentences and real human sentences. This research will contribute to the un-
derstanding of synthetic data validation and its potential to support the development of robust
tools for peer supporters, ultimately enhancing the quality of mental health care.

2. Methods

2.1. Original Data Collection

Collection and transcription of the original human generated conversations are described
in Kadakia et al.9 In short, anonymized records of peer support conversations from the
PeerTECH platform where manually recorded verbatim.9 High-fidelity and low-fidelity sen-
tences are defined in the context of adherence to best practices for peer support in mental
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health.9,10,21 High-fidelity sentences refers to interactions that strictly follow established pro-
tocols and best practices, ensuring comprehensive and consistent delivery of peer support.
These interactions typically include elements such as active listening, empathy, validation of
experiences, and appropriate use of self-disclosure.9,10,21 Low-fidelity sentences, on the other
hand, denote interactions that deviate from these best practices, potentially lacking in one
or more critical aspects of effective peer support.9,10,21 Such deviations might include inade-
quate listening, insufficient emotional engagement, or inappropriate self-disclosure, which can
undermine the effectiveness of the support provided.

2.2. Synthetic Text Generation

To generate the synthetic text, we utilized OpenAI’s Application programming interface
(API), specifically the GPT-4 Turbo model,22 which was the most advanced model avail-
able at the time of the study. The process aimed to produce 10,000 sentences, which should
provide a robust training set for downstream NLP modeling.23 The GPT-4 Turbo model was
configured with a temperature setting of 0.9.

The generation process involved three key components: a system prompt, a specific prompt,
and user profiles. Two distinct system prompts were employed to generate transcripts demon-
strating both high- and low-fidelity practices in peer support conversations. The specific
prompt was constructed using characteristics of both the peer supporter and the patient.
For the peer supporter, the prompt included their age, gender, personality traits, mental
health history, and the topic of the support session. For the patient, the prompt specified
their age, gender, personality traits, and their diagnosed mental health condition. This struc-
tured approach ensured that each generated conversation was contextualized with specific
demographic and psychological information for both participants.

Example Prompt 1
Peer Supporter - Age: 35, Gender: female, Traits: compassionate, insightful, Mental
Health History: post-traumatic stress disorder, Session Topic: coping with trauma
Patient - Age: 29, Gender: male, Traits: distrustful, struggling, Mental Health Issue:
trauma recovery

Example Prompt 2
Peer Supporter - Age: 41, Gender: female, Traits: calm, reassuring, Mental Health
History: post-traumatic stress disorder, Session Topic: managing triggers
Patient - Age: 30, Gender: female, Traits: jumpy, anxious, Mental Health Issue:
post-traumatic stress disorder

All data manipulation and analysis were conducted in R version 4.3.2,24 with extensive
use of the tidyverse suite of packages25 for data manipulation, cleaning, and visualization. A
total of 154 API calls were executed, resulting in the generation of 10,736 sentences, exceeding
the initial target of 10,000 sentences.
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2.3. Synthetic Text Validation

To evaluate the accuracy and confidence of human raters in distinguishing between human-
generated and synthetic text, we randomly selected 100 sentences. These sentences were cat-
egorized based on their origin and fidelity: 17 high-fidelity and 14 low-fidelity sentences were
human-generated, while 43 high-fidelity and 26 low-fidelity sentences were synthetic. High-
fidelity refers to adherence to best practices for peer support in mental health providing,
while low-fidelity indicates lesser adherence.

We recruited two types of raters: AI-proficient non-peer supporters from Information,
Technology, and Consulting at Dartmouth College, and peer professionals recruited through
social media calls and email lists. Raters rated their confidence in how each sentence was
generated, using the options: Definitely Human, Maybe Human, I Don’t Know, Maybe AI,
and Definitely AI. Responses were collected using the Qualtrics survey platform (Qualtrics,
Provo, UT).

The survey data, which included ratings from AI-proficient non-peer supporters and peer
supporters was rated on a scale from 1 to 5, where 1 represented “Definitely AI” and 5
represented “Definitely Human.” Confidence ratings were assigned numerical values: 100 for
“Definitely,” 60 for “Maybe,” and 0 for “I don’t know.”

To evaluate rater performance, several metrics were calculated:
1. Percentage Agreement: For each sentence, the percentage agreement among all raters

was calculated by determining the proportion of ratings that matched the most common rating.

Agreement =

(∑n
i=1 I(ri = mode(r))

n

)
× 100

where ri represents the rating of the i-th rater, mode(r) is the most common rating among all
raters, and n is the total number of raters.

2. Group-Specific Agreement: The percentage agreement was calculated separately for
AI-proficient non-peer supporters and peer supporters to understand agreement within each
group.

3. Weighted Accuracy: Weighted accuracy was determined by comparing each rating to
the true origin of the sentence and adjusting for confidence levels.

Weighted Accuracy =

(∑n
i=1wi · I(ri = true origin)

n

)
× 100

where wi is the weight assigned based on the confidence level of the i-th rating, ri is the rating
of the i-th rater, and true origin indicates whether the sentence is human or AI-generated.

4. Percentage of Errors: The percentage of incorrect ratings was calculated by deter-
mining the proportion of ratings that deviated from the true origin of the sentence.

5. Average Confidence: The average confidence level for each sentence was calculated
by averaging the confidence scores provided by the raters.

Summary statistics were generated to provide an overview of the overall agreement, accu-
racy, error rates, and confidence levels among the different rater groups.

We also calculated accuracy, errors, and confidence at the rater level. For each rater, the
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percentage of sentences judged as human that were actually human was calculated:

Percentage Judged Human (Actual Human) =

(∑n
i=1 I(ri ∈ {4, 5} ∧ ti = Human)∑n

i=1 I(ri ∈ {4, 5})

)
× 100

and the percentage of sentences judged as human that were actually AI was calculated:

Percentage Judged Human (Actual AI) =

(∑n
i=1 I(ri ∈ {4, 5} ∧ ti = Synthetic)∑n

i=1 I(ri ∈ {4, 5})

)
× 100

2.4. Statistical Analysis

We performed various statistical tests to evaluate differences in rater performance and con-
fidence. Paired t-tests26,27 compared the accuracy, confidence, and agreement between peer
supporters and AI-proficient non-peer supporters. A one-sample t-test assessed whether the
overall accuracy differed significantly from 50%. An independent t-test evaluated the overall
agreement among all raters.

Correlation tests28 examined the relationship between errors and confidence levels for both
rater groups and for sentences labeled with low-fidelity. Specifically, correlations between errors
and confidence for AI-proficient non-peer supporters and peer supporters were assessed, as well
as for low-fidelity sentences.

To compare the proportion of AI judgments between low and high-fidelity sentences, paired
t-tests were performed separately for AI-proficient non-peer supporters and peer supporters.
Paired t-tests26,27 were also conducted to compare the percentage of judgments that were
actually human versus AI for each rater type.

2.5. Signal Detection Analysis

To evaluate the ability of raters to distinguish between human-generated and synthetic text,
we calculated signal detection measures. Weights for definite and maybe confidence levels were
defined, assigning a weight of 1 for definite judgments and 0.6 for maybe judgments.

For each rater, we calculated the signal detection theory (SDT) measures,29 including the
signal detection score (d’), beta, and criterion (c).

For each sentence, the counts of hits (true positives), false alarms (false positives), misses
(false negatives), and correct rejections (true negatives) were determined based on the ratings
and true origin. Specifically, for sentences with a true origin of human, hits were defined as
ratings of “Definitely Human” or “Maybe Human,” and false alarms were defined as ratings
of “Definitely AI” or “Maybe AI.” For sentences with a true origin of synthetic, hits were
defined as ratings of “Definitely AI” or “Maybe AI,” and false alarms were defined as ratings
of “Definitely Human” or “Maybe Human.”

The SDT measures were calculated using the psycho package in R.30 The d’ score was
computed as:

d′ = Φ−1(hit rate)− Φ−1(false alarm rate)

where Φ−1 is the inverse cumulative distribution function of the standard normal distribution.
For each rater, the weighted SDT measures (d’, beta, and c) were calculated separately

for human and synthetic origins. The combined measures for each rater were used to perform
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t-tests to compare against a hypothesized mean of 0. T-tests26,27 for the combined d’ scores,
beta, and c values were conducted to determine if there was a significant ability to distinguish
between human and synthetic text.

2.6. Insight Calculation (Meta d’)

To evaluate rater insight, we calculated the meta d’ score, which measures a rater’s metacog-
nitive ability to discriminate between their correct and incorrect judgments.31,32

The meta d’ score was calculated using the negative log-likelihood optimization approach.
Specifically, we minimized the negative log-likelihood to find the meta d’ value that best
describes the observed data. The optimization was performed using the L-BFGS-B method,33

ensuring the parameter estimates stayed within reasonable bounds.
The steps to calculate meta d’ included:

(1) Aggregating the ratings data for each rater to count the occurrences of each confidence
level (0, 60, 100) for human and synthetic sentences.

(2) Defining the negative log-likelihood function based on the signal detection theory model
parameters.

(3) Using the optimx package34 to optimize the parameters and calculate the meta d’ score.
(4) Extracting and summarizing the meta d’ scores for each rater.

2.7. Sensitivity and Specificity Analysis

We calculated the sensitivity and specificity for each rater to evaluate their ability to correctly
identify human-generated text (with human as the positive case). The analysis was performed
using R with the dplyr,35 tidyr,25 purrr,36 ggplot2,37 and pROC38 packages.

Area under the receiver operating characteristic (AUROC) curves were calculated for each
rater. AUROC curves were plotted for the best, worst, and median raters.39,40

2.8. Code Availability Statement

The code used in this study is publicly available on GitHub at
[https://github.com/FrejusGdm/Synthetic-Text-Validation-Karen-Fortuna].

3. Results

The age of peer supporters ranged from 26 to 45 years (M = 32.5, SD = 4.2), while patients’
ages ranged from 19 to 45 years (M = 29.3, SD = 5.7). The most common mental health issues
addressed were depression (22.4%), social anxiety (14.9%), and obsessive-compulsive disorder
(13.0%). These are shown in Figure 1.

We recruited 9 AI-proficient non-peer supporters professionals and 13 professional peer
supporters to complete the survey (n=22). The mean agreement across all raters was 27.97
(95% CI: 25.55, 30.39). There was no significant difference in the levels of agreement between
AI-proficient non-peer supporters and peer supporters (p = 0.12). The overall accuracy of raters
was lower than what would be expected by random chance, with a mean accuracy of 43.10
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Fig. 1: Demographic Distributions of Peer Supporters and Patients. (A) Gender distribution
among peer supporters and patients. (B) Frequency of various mental health issues reported
by patients.

(95% CI: 41.11, 45.09; p < 0.001 for a two-sided t-test). Within this, AI-proficient non-peer
supporters demonstrated higher accuracy (48.62%) compared to peer supporters (36.41%;
mean difference -12.21p < 0.001) and reported higher confidence levels (mean difference -
13.30p < 0.001), although the overall confidence was generally low, with a mean confidence
score of 47.75 (95% CI: 45.61, 49.89). These relationships are illustrated in Figure 2 (A)-(C).

Overall, we found that errors and confidence were not significantly correlated (p = 0.08).
However, this overall trend masks important differences between groups and conditions.
Among AI-proficient non-peer supporters, there was a significant negative correlation between
errors and confidence (r = −0.43, 95% CI: -0.55, -0.25; p < 0.001), indicating that as confi-
dence increased, errors decreased. In contrast, for peer supporters, the correlation between
errors and confidence was not significant (r = −0.19, 95% CI: -0.37, 0.01; p = 0.06). These
results are shown in Figure 2 (D).

When examining sentences labeled with low-fidelity, the correlation between errors and
confidence for peer supporters was not significant (r = −0.03, 95% CI: -0.34, 0.29; p = 0.87).
However, for AI-proficient non-peer supporters, there was a significant negative correlation
(r = −0.33, 95% CI: -0.58, -0.02; p = 0.04) in low-fidelity sentences. These results are shown
in Figures 2 (E) and (F).

In high-fidelity sentences, peer supporters exhibited a significant negative correlation be-
tween errors and confidence (r = −0.38, 95% CI: -0.58, -0.14; p = 0.003). Similarly, AI-proficient
non-peer supporters showed a significant negative correlation (r = −0.51, 95% CI: -0.68, -0.30;
p < 0.001).
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Fig. 2: Analysis of rater performance and confidence. (A) Weighted accuracy for AI-proficient
non-peer supporters and peer supporters, with a 50% accuracy line indicated. (B) Percentage
agreement among AI-proficient non-peer supporters and peer supporters. (C) Rating confi-
dence. (D) Scatter plot with fitted line and 95% confidence intervals showing rating confidence
by percentage errors. (E) Same as (D) for AI-proficient non-peer supporters with low-fidelity
ratings. (F) Same as (D) for peer supporters with low-fidelity ratings.

Peer support raters were more likely to assume that low-fidelity sentences were AI-
generated compared to high-fidelity sentences. This difference in proportions was statisti-
cally significant (p = 0.007), with a difference in proportions ranging from 0.02 to 0.10. For
AI-proficient non-peer supporters, the tendency to assume low-fidelity sentences were AI-
generated was also observed, although the difference was only borderline significant (p = 0.05),
with a difference in proportions ranging from 0.00 to 0.09. These findings indicate that both
peer supporters and AI-proficient non-peer supporters are more inclined to classify low-fidelity
sentences as AI-generated, though this tendency is more pronounced and statistically signifi-
cant among peer supporters.

The bar plot in Figure 3 (A) visualizes the percentage of sentences judged as “Human”
by two different groups of raters: AI-proficient non-peer supporters and peer supporters, for
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sentences that were actually AI-generated (AI). Of all sentences rated as “Human” by AI-
proficient non-peer supporters, 66.7% were AI-generated. This percentage was higher in the
peer supporter group, with 83.3% of sentences rated as “Human” being AI-generated. Sta-
tistical tests revealed that for AI-proficient non-peer supporters, the tendency to judge AI
sentences as “Human” was borderline statistically significant (p = 0.05). In contrast, Peer
Supporters showed a statistically significant tendency to judge AI-generated sentences as
“Human” (p < 0.001). These findings indicate a tendency for both AI-proficient non-peer sup-
porters and Peer Supporters to be deceived by AI-generated content, with Peer Supporters
being particularly susceptible. This could perhaps indicate AI hyperrealism31— where even
trained individuals are frequently unable to distinguish AI from human-generated text.

Signal detection theory was applied to evaluate the ability of raters to distinguish between
human-generated and AI-generated text. The d’ (d-prime) score is a measure of a rater’s ability
to discriminate between signal (human-generated text) and noise (AI-generated text), where
a higher d’ indicates better discrimination ability. Our analysis revealed that the combined
mean d’ score was significantly greater than zero (mean = 0.39, 95% CI: 0.22, 0.55; p < 0.001),
indicating that detection is occurring among raters.

In addition to d’, we also evaluated beta (β) and criterion (c), which provide insights into
the decision-making biases of the raters. A positive beta (β) indicates a conservative response
bias, meaning raters are less likely to label sentences as human. The combined mean beta (β)
was significantly greater than zero (mean = 1.37, 95% CI: 1.17, 1.57; p < 0.001), suggesting a
strong bias towards not labeling sentences as human. Similarly, the combined mean criterion
(c) was significantly greater than zero (mean = 0.62, 95% CI: 0.44, 0.80; p < 0.001), reinforcing
the notion of a reluctance to label sentences as human.

We also calculated the meta d’ score, referred to as insight, based on the raters’ confidence
levels. The meta d’ score measures a rater’s metacognitive ability to discriminate between their
correct and incorrect judgments. Our results showed that the combined mean meta d’ score
was not significantly different from zero (mean = −0.39, 95% CI: -1.37, 0.59; p = 0.42). This
near-zero insight score indicates that raters do not have a reliable metacognitive awareness of
their accuracy in distinguishing between human and AI-generated sentences, suggesting that
their confidence levels do not effectively reflect their true performance.

Plotting the signal detection score against the insight score allows us to identify how
detection and insight are interrelated. As shown in Figure 3 (B), we observe only two raters
(9%) with both good insight and good detection in the top-left quadrant of the plot.

Sensitivity and specificity were calculated with regards to the raters’ ability to discern
human-written sentences and are displayed in Figure 2(C). No rater achieved both a sensitivity
and specificity greater than 0.7, indicating that none of the raters were highly proficient at
correctly identifying human-written sentences while also correctly rejecting AI-generated ones.

We calculated the area under the receiver operating characteristic curve (AUROC) for
each rater, and a boxplot of AUROC scores across AI-proficient non-peer supporters and peer
supporters is shown in Figure 2(D). The mean AUROC for peer supporters was 0.59 (95% CI:
0.52, 0.67), while the mean AUROC for AI-proficient non-peer supporters was 0.61 (95% CI:
0.56, 0.66).
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Fig. 3: Comparison of rater performance and insights. (A) Bar chart showing the percentage
of ratings within each rater type judged as human, grouped by the true origin (AI vs Human
generation). Low and high fidelity sentences are pooled. (B) Plot of rater insight, calculated
as Meta d’ (as described by31), and signal detection score (d’) using the psycho30 package. (C)
Scatter plot of sensitivity versus specificity of a human rating for a true human label by rater.
(D) Boxplot of AUROC scores by rater type. (E) AUROC for the best, worst, and median
rater.

The top AUROC calculated (Peer Supporter), the bottom AUROC calculated (also Peer
Supporter), and the rater with an AUROC closest to the median (AI-proficient non-peer sup-
porters) are shown in Figure 2(E). These results highlight the variability in rater performance
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and suggest that, overall, raters struggled to consistently distinguish between human and
AI-generated text.

4. Discussion

There is a clear need for targeted training programs to enhance peer supporters’ ability to
critically evaluate their performance during peer-support calls, allowing them to improve the
quality of care they are producing.9,10 This aligns with recommendations by Naslund et al.41

philosophies on the importance of digital literacy in mental health support contexts. To sup-
port peer supporters in self-evaluating and improving their job performance, digital tools can
play a crucial role, but such tools require access to large amounts of high-quality data.

Given the difficulty in obtaining sufficient real-world data, large language models (LLMs)
offer a promising solution by generating synthetic data, as evidenced by the low detection
accuracy (43.10%) in our study, where the AI-generated text closely mimicked human-created
content.

The significant difference in accuracy between AI-proficient non-peer supporters and peer
supporters, with the AI-proficient group demonstrating higher accuracy, is expected. However,
the overall low accuracy for both groups underscores the challenges in reliably detecting AI-
generated content, even for those with technical expertise.

This raises the possibility that exposure to AI in professional settings may confer some
advantage in detecting synthetic content. However, the performance gap was small, which
suggests that even AI-exposure may not be sufficient to reliably distinguish between human
and AI-generated text in all cases. This brings into question how evaluators are selected for
similar studies, as familiarity with AI might not always correlate with better performance in
validation tasks. Future research should consider how varying levels of AI-exposure might im-
pact evaluators’ ability to assess synthetic text, and whether additional training or background
knowledge is required for optimal evaluation.

The tendency of both peer supporters and AI-proficient non-peer supporters to classify
low-fidelity sentences as AI-generated more often than high-fidelity sentences is particularly
interesting. This suggests that the quality or adherence to best practices in peer support
conversations might be a key factor in how text is perceived.

The promising results of this study, reflected in the low detection accuracy, suggest that
synthetic text could be effectively integrated into training data for automatic feedback algo-
rithms designed for peer supporters. However, it is essential to carefully consider the ethical
implications and ensure that the human element, which is crucial to peer support, is main-
tained.42

4.1. Limitations

There are several limitations to this analysis. Firstly, the small sample size (n = 22) limits
further generalizing our findings. However, the effects observed achieve statistical significance,
which suggests that the findings are robust despite the sample size. Secondly, our analysis
was based on the classification of individual sentences without additional context. While this
serves our goal of creating technologies to highlight sentences of high- and low-fidelity, it is
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reasonable to expect that providing more context around each sentence might yield different
results, as raters could potentially make more accurate judgments with more information.

Another limitation is the potential bias introduced by the specific demographic and profes-
sional backgrounds of our raters, which may not be representative of the broader population
of peer supporters and AI-proficient individuals. Additionally, the inherent variability in in-
dividual raters’ experiences and familiarity with AI-generated content could influence their
performance and confidence levels.

Testing was conducted on a single model, which restricts our ability to generalize the find-
ings across LLMs that may perform differently. Furthermore, we did not conduct a qualitative
analysis of the synthetic data, which could have provided deeper insights into its linguistic
quality, semantic accuracy, stylistic consistency, and realism. A more detailed assessment, such
as annotation by professional peer supporters, could offer valuable perspectives on the text’s
quality and its alignment with human communication in similar contexts.

We did not evaluate the synthetic data for downstream tasks, leaving its practical appli-
cation in real-world settings unexplored. This remains an important area for future work, and
in our next follow-up study, we plan to investigate how synthetic data can be integrated into
various downstream tasks, including its potential to enhance peer-support tools and other
applications in similar domains.

Despite these limitations, our findings support the hypothesis that synthetic data gen-
eration for augmentation is feasible. The validation efforts indicate that both AI-proficient
non-peer supporters and peer supporters struggle to reliably distinguish between human and
AI-generated text, suggesting that AI-generated synthetic data can effectively mimic human-
written content. This finding has promising implications for the use of synthetic data to
augment training datasets and improve the performance of fidelity classification algorithms.

5. Conclusion

This study demonstrates the potential for using LLMs in synthetic text generation to cre-
ate diverse datasets of peer support conversations, encompassing both high- and low-fidelity
examples. Our findings reveal that both our test groups had below 50% in distinguishing syn-
thetic text from human-created content, underscoring the sophisticated nature of current AI
language models. Importantly, this work does not aim to replace human peer supporters with
AI chatbots, but instead lays the groundwork for developing an automated feedback system to
enhance peer support training and quality assurance. The synthetic sentences generated pro-
vide a rich dataset for training AI models to classify the quality of peer support interactions,
potentially offering real-time feedback to supporters.

Future work might focus on developing and validating an AI-based feedback algorithm
using our synthetic dataset, exploring its ethical implications, and investigating the long-term
impacts of AI-assisted training on peer support outcomes. Ultimately, this study represents a
significant step towards leveraging AI to enhance, rather than replace, human-delivered peer
support, contributing to improved mental health support services.
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