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Abstract 
Women's health conditions are influenced by both genetic and environmental factors. Understanding these 
factors individually and their interactions is crucial for implementing preventative, personalized medicine. 
However, since genetics and environmental exposures, particularly social determinants of health (SDoH), 
are correlated with race and ancestry, risk models without careful consideration of these measures can 
exacerbate health disparities. We focused on seven women’s health disorders in the All of Us Research 
Program: breast cancer, cervical cancer, endometriosis, ovarian cancer, preeclampsia, uterine cancer, and 
uterine fibroids. We computed polygenic risk scores (PRSs) from publicly available weights and tested the 
effect of the PRSs on their respective phenotypes as well as any effects of genetic risk on age at diagnosis. 
We next tested the effects of environmental risk factors (BMI, lifestyle measures, and SDoH) on age at 
diagnosis. Finally, we examined the impact of environmental exposures in modulating genetic risk by 
stratified logistic regressions for different tertiles of the environment variables, comparing the effect size of 
the PRS. Of the twelve sets of weights for the seven conditions, nine were significantly and positively 
associated with their respective phenotypes. None of the PRSs was associated with different ages at diagnoses 
in the time-to-event analyses. The highest environmental risk group tended to be diagnosed earlier than the 
low and medium-risk groups. For example, the cases of breast cancer, ovarian cancer, uterine cancer, and 
uterine fibroids in highest BMI tertile were diagnosed significantly earlier than the low and medium BMI 
groups, respectively). PRS regression coefficients were often the largest in the highest environment risk 
groups, showing increased susceptibility to genetic risk. This study’s strengths include the diversity of the 
All of Us study cohort, the consideration of SDoH themes, and the examination of key risk factors and their 
interrelationships. These elements collectively underscore the importance of integrating genetic and 
environmental data to develop more precise risk models, enhance personalized medicine, and ultimately 
reduce health disparities. 
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1 Introduction 

Since the completion of the Human Genome Project in 2003, countless studies have 
been conducted to associate genetic variants with diseases1–3. However, genetic factors 
accompanied by environmental factors collectively contribute to pathogenesis and progression 
of diseases. Therefore, quantifying the effects of multimodal risk factors separately and 
together will help to improve disease risk models. Accurate stratification of individual disease 
risk is an essential step in the way to reduce the burden of health disparities and implement 
personalized preventative care. 

For many highly heritable diseases, such as coronary artery disease and type 2 diabetes, 
PRSs are useful for stratifying patients into risk groups based on their genetics. However, in 
the context of women's health diseases, which have historically been underfunded4 and 
understudied5, the predictive accuracy of PRSs has been inconsistent, especially across diverse 
populations6. Globally, large efforts have been undertaken to build diverse resources to support 
such studies, including the UK Biobank7, Finngen8, BioVU9, BioBank Japan10, the Penn 
Medicine Biobank11, and a newer resource funded by the NIH, the All of Us (AOU) Research 
Program12. The growth of large genomic datasets has enabled not only the detection of disease-
associated genetic variations but also the possibility of using genetic and non-genetic risk 
factors to predict disease risk before the onset. Numerous studies, like the WISDOM trial13 
focusing on breast cancer and the eMERGE network examining PRS results for 10 disease 
outcomes14, are underway to investigate how PRSs can be incorporated into clinical practice.  

Environmental risk factors are multi-faceted, including lifestyle measurements as well 
as social determinants of health (SDoH). Most of these variables are measured through survey 
participation. Lifestyle aspects, like alcohol use, smoking, and physical activity, have been 
linked to disease risk for endometriosis15, breast cancer16, and uterine fibroids17, respectively. 
SDoH are define measurements for social inequities which can impact a person’s health. These 
include neighborhood disorder, stress, and loneliness. Chronic stress and loneliness have been 
shown to increase lifetime risk of many serious diseases, like Alzheimer’s18, cardiovascular 
disease19, etc. Additionally, SDoH impact diseases affecting women specifically20–22. 
Interactions between genetic and environmental effects have been studied previously, with 
respect to both individual genetic variants23 and PRSs24. It has been shown that incorporating 
PRS with environment measurements such as stress improves model performance for other 
complex disorders25. Therefore, understanding the influence of lifestyle and environmental 
factors alongside genetic factors is crucial for predicting women's health outcomes. 

One important aspect of predictive modeling in personalized medicine is to examine 
the disease progression, including the onset of diseases. Both categories of risk factors (genetic 
and environmental) are most often studied in the context of lifetime disease risk. Time-to-event 
analyses are growing in popularity to evaluate longitudinal risk, utilizing survival analysis 
methodologies to evaluate the impact of risk factors on disease progression, including the onset 
of the disease. 

The aim of this study is to identify and quantify interactions between genetic risk of 
women’s health conditions and external variables in a diverse cohort of women within the 
AOU. We hypothesize that an individuals’ susceptibility to disease risks is not solely dictated 
by their genetic composition but is greatly influenced by these environmental and social 
determinants. Understanding how environmental contexts impact the efficacy and clinical 
utility of PRSs will help to ensure that they are implemented in equitable ways. 
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2 Methods 

2.1 Study Dataset – All of Us Research Program 

The All of Us Research Program (AOU) is a dataset supported by the NIH comprised of 
409,420 participants with electronic health record (EHR) data, 245,400 of whom have short-
read whole genome sequencing (WGS) data. In our study, we included 145,563 of the WGS 
individuals who were assigned female at birth26  For study individuals, genetic ancestry was 
assigned by the AOU data team, who computed genetic similarity with the 1000 genomes 
reference populations based on genetic principal components. 

The EHR data for AOU are stored as billing codes in tables that follow the Observational 
Medical Outcomes Partnership (OMOP) structure27. For our focus on women’s health 
conditions, we selected breast cancer (BC), cervical cancer (CC), endometriosis (Endo), 
ovarian cancer (OC), preeclampsia (PE), uterine cancer (UC), and uterine fibroids (UF). Each 
of these diseases has ICD-9 and ICD-10 diagnosis codes (Results, Table 1). Case/control status 
was determined by the presence of one or more ICD codes for each phenotype. 

2.2 Calculating PRSs for women’s health outcomes 

The PGS Catalog28 is a public repository of PRS weights that have been published and 
validated. We browsed the PGS catalog for PRSs for each condition. In cases when more than 
one PRS was available, we prioritized sets of weights that had been tested on large, multi-
ancestry validation cohorts and that have shown promising results based on metrics such as 
AUROC. The accession numbers for the weights we selected are shown in Figure 1. We 
computed all 12 scores from the downloaded files in genome build 38 with Plink 2.0’s --score 
function29. The scores for each phenotype were then standardized by genetic ancestry group. 

2.3 Environmental variables (SDoH and lifestyle measures) 

AOU issued several surveys to its participants, including SDoH and Lifestyle questionnaires, 
combining instruments from other well-studied surveys. To compute continuous scales for 
neighborhood physical disorder, neighborhood social disorder, stress, and loneliness, we 
followed procedures as described in Tesfaye et al 202430. The other two survey-derived 
lifestyle variables were smoking and alcohol use. For smoking, there were seven questions. For 
the three quantitative questions (ranging from 0-99), we assigned these values: responses of 
zero (1), then the remaining quartiles (2-5). For the other four smoking questions, we assigned 
numeric values to the responses: Not At All (1), Some Days (3), Every Day (5). There were 
three questions pertaining to alcohol use, and we assigned responses numerical values of one 
to five, with five corresponding to heavier drinking. 

We aimed to capture other health measurements using biometrics and wearables data. 
Per individual, we used median Body Mass Index (BMI) measurement over time. We 
quantified activity levels using two Fitbit-derived measurements: daily steps (ST) and daily 
sedentary minutes (SM), as both have been linked to health risks31,32. Similarly to BMI, we 
took the median across each day that had measurements to obtain one value per individual. 
Once we computed each of the nine continuous environmental factors, we visualized the 
Pearson correlation between them to examine how they relate to each other and potentially 
eliminate any that were highly correlated. 
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2.4 Statistical analyses 

2.4.1 Stratified time-to-event analyses for age at diagnosis 

For each case of the six phenotypes, we assigned the age of first diagnosis code of a 
condition as “age at diagnosis”. This age variable was used as outcome for time-to-event 
analyses. Time-to-event analyses were performed in two different contexts: stratified by 
genetic risk and stratified by environmental variable level. For each phenotype, we looked at 
three curves defined by the tertiles of the stratifying variable (low/medium/high). Those curves 
(1 = low, 2 = medium, 3 = high) were fit to survival functions33 using KaplanMeierFitter from 
the lifelines Python package34. The three survival functions were compared in a pairwise 
scheme using the log rank test, which results in a chi-squared test statistic. 

2.4.2 Quantifying effects of PRSs in environmental contexts 

Association testing was performed for each of the twelve PRSs with their corresponding 
phenotype. The odds ratio (OR) coefficient was estimated using a logistic regression (with an 
intercept) in which the outcome was the phenotype, the risk score was the independent variable, 
and age at the time of the EHR data extraction was included as a covariate (Equation 1).  

𝐿𝑜𝑔𝑖𝑡(𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒)  ∼  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝑃𝑅𝑆  +  𝐴𝑔𝑒  (1) 
For the phenotypes with more than one set of PRS weights (breast cancer, endometriosis, 
ovarian cancer, and uterine fibroids), we selected the PRS with the largest regression 
coefficient, resulting in six phenotypes with significant PRS effects (Results, Figure 1). 

Next, for each phenotype and environmental risk factor, we divided our study 
population into nine groups based on environmental variable tertiles (low, medium, high) and 
genetic risk tertile (low, medium, high). To illustrate the differences in risk levels among 
various environmental and genetic risk groups, we used the medium/medium subgroup as a 
reference and computed the odds ratio (and 95% confidence interval) for the phenotype in each 
of the other eight subgroups, displayed in 3x3 grids for comparison. 

Finally, to examine whether the impact of the polygenic risk score (PRS) on disease risk 
varied across different levels of environmental risk, we conducted stratified regression 
analyses. By dividing the study population into subgroups based on environmental factors, we 
assessed how the association between PRS and disease outcomes changed within each 
subgroup, allowing us to determine if the PRS effect size was influenced by the level of 
environmental risk. Each environmental variable was divided into tertiles, and then the logistic 
regression was performed as described previously (Equation 1) for each of the three sub-
groups. In a similar manner, we tested the effect of each environmental risk factor on the 
phenotypes, stratified by genetic risk tertile (Equation 2). 

𝐿𝑜𝑔𝑖𝑡(𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒)  ∼  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡  +  𝐴𝑔𝑒  (2) 

3 Results 

3.1 PRSs for women’s health phenotypes 

Our study cohort consisted of female AOU participants with short-read WGS (N = 145,563). 
We assigned case/control phenotypes in AOU using hierarchical diagnosis billing codes, 
Table 1considering both ICD-9 and ICD-10 codes, as shown in Table 1. 
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12 sets of weights selected from PGS catalog with reported associations to our phenotypes of 
interest were selected (Table 2). 

Table 2 : The PRSs evaluated along with their reported traits, number of variants, and the percentage of the 

population reported as European in development/training (dev) and testing set. Those reported as “Unspecified” 

did not provide ancestry specific population reporting 

Score Reported Trait Year Number of Variants % EUR in Dev % EUR in Validation 

PGS000004 Breast Cancer 2018 313 100 76.4 

PGS004611 Breast Cancer 2023 76 58.6 Unspecified 

PGS001299 Cervical cancer 2022 24 100 40 

PGS003447 Endometriosis 2021 14 98 54.5 

PGS002077 Endometriosis 2022 14 100 37.5 

PGS001866 Endometriosis 2022 399 100 37.5 

PGS002250 Epithelial ovarian cancer 2022 27,240 100 60 

PGS003394 Epithelial ovarian cancer 2022 36 100 50 

PGS004593 Preeclampsia 2022 1,102,059 Unspecified 100 

PGS001795 Uterine cancer 2023 911,692 83.9 100 

PGS001032 Uterine fibroids 2022 161 100 40 

PGS002263 Uterine fibroids 2022 4,457 100 100 

We tested logistic regressions for each of the 12 sets of weights selected from the PGS catalog. 
The PRS for each phenotype with the most significant positive effect was chosen for 
downstream analysis (Figure 1). 

Table 1: The seven women’s health phenotypes tested. The root ICD codes used for case definitions, the 

number of cases in the female AOU WGS dataset, and the mean age at diagnosis (Dx) for those cases. 

Phenotype ICD-9 Code ICD-10 Code AOU Cases Dx Age Mean (std) 

Breast Cancer (BC) 174 C50 6,444 58.4 (11.7) 
Cervical Cancer (CC) 180 C53 546 51.1 (13.3) 
Endometriosis (Endo) 617 N80 4,306 43.5 (11.6) 
Ovarian Cancer (OC) 183 C56 815 55.1 (13.2) 
Preeclampsia (PE) 642 O14 1,966 30.3 (7.0) 
Uterine Cancer (UC) 182 C55 715 59.1 (11.1) 
Uterine Fibroids (UF) 218 D25 10,829 48.2 (11.1) 
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Figure 1: Testing the effects of the PRSs on the women’s health outcomes. (a) Coefficients (in odds ratio scale) 

for logistic regressions based on each PRS. The left axis labels indicate phenotype and PGS Catalog Weights. The 

right axis labels show the p-value. Scores that were not considered in downstream analyses have a red “X”. (b) 

Time-to event analyses with one curve per PRS risk tertile. Pairwise log rank comparison p values are indicated 

as text. X-axes above and below each panel are age at diagnosis (Dx). BC: Breast Cancer; UF: Uterine Fibroids; 

CC: Cervical Cancer; UC: Uterine Cancer; Endo: Endometriosis; OC: Ovarian Cancer; PE: Preeclampsia.  

Based on the logistic regression coefficients for each of the 12 PRSs, we dropped any PRS with 
odds coefficient <1 (PGS004611 for breast cancer35) and any PRS whose p-value for the 
coefficient was >0.05 (PGS001299 for cervical cancer36, PGS003394 for ovarian cancer37, and 
PGS002263 for uterine fibroids38). Since Cervical cancer PRS could not meet these filtering 
criteria, the phenotype was removed from downstream analysis. In addition, although both 
PGS00207739 and PGS00186639 were significantly associated with endometriosis, only the 
score that had the strongest effect (PGS00344740) was retained. 

3.2 Environmental risk factor measurements 

The influence of environmental factors, namely, stress level (SL), loneliness level (LL), 
neighborhood physical disorder (NPD), and neighborhood social disorder (NSD), one 
biometric measurement (median BMI), two lifestyle scores — alcohol use (AU) and smoking 
(SK), and two Fitbit measurements — daily steps (ST) and daily sedentary minutes (SM) were 
tested on susceptibility to genetic risk. We tested these variables for correlation (Figure 2a). 
Since some measurements were unavailable on all participants, we report the smaller case 
numbers for each phenotype-measurement combination in Figure 2b. 

The most highly correlated variables were NSD and NPD (0.73). Since a higher/greater 
number of daily steps (ST) is beneficial to health, it was found to be negatively correlated with 
all other variables except AU. LL was moderately correlated with three other measures, NSD 
(0.28), NPD (0.21), and SL (0.29). Since some measurements were unavailable for some 
participants, we report the smaller case numbers for each phenotype-measurement 
combination. The Fitbit measurements had the fewest participants, so the numbers of cases 
were small, especially for the rarer phenotypes such as cervical cancer, uterine cancer, ovarian 
cancer, and preeclampsia. Nearly every participant had BMI measurements, so tests with BMI 
had the largest sample sizes. 
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Figure 2: (a) heatmap showing correlation between all nine measurements considered. Correlation values 

significantly different from zero (p < 0.05) are marked with an asterisk. (b) heatmap showing the number of cases 

for a given phenotype (column) and measurement (row) combination. BC: Breast Cancer; UF: Uterine Fibroids; 

CC: Cervical Cancer; UC: Uterine Cancer; Endo: Endometriosis; OC: Ovarian Cancer; PE: Preeclampsia. BMI: 

Body Mass Index; AU: Alcohol Use; SK: Smoking ; SM: Sedentary Minutes; ST: Steps; LL: Loneliness; NSD: 

Neighborhood Social Deprivation; NPD: Neighborhood Physical Deprivation and SL: Stress Level. 

3.3 Environmental effects on age at diagnosis with time-to-event curves 

We estimated the effect of different levels of environmental exposures, categorized into 
low/medium/high tertiles, on the age at diagnosis for each phenotype. Among the four social 
determinants of health (SDoH) factors, Neighborhood Social Deprivation (NSD) was removed 
from the analysis due to its high correlation with Neighborhood Physical Deprivation (NPD), 
as illustrated previously in Figure 2a. The survival functions, which depict the probability of 
remaining disease-free over time for each tertile of environmental exposure, are presented in 
Figure 3. Additionally, the pairwise p-values indicate the statistical significance of the 
differences between the survival curves for each tertile, highlighting the impact of varying 
levels of environmental exposures on disease onset. 
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Figure 3: Time-to-event analyses for BMI and the SDoH themes (a - BMI, b - loneliness, c - neighborhood physical 

disorder, and d - stress). Each panel shows three “survival” curves per phenotype, stratified by the value of the 

environmental measure where 1 is the lowest tertile and 3 is the highest tertile. The x-axes represent age at 

diagnosis (Dx). Also indicated in each grid cell are the p-values of pairwise log rank comparisons between those 

three curves. Any p-values less than 0.05 are annotated with an asterisk. BC: Breast Cancer; UF: Uterine Fibroids; 

UC: Uterine Cancer; Endo: Endometriosis; OC: Ovarian Cancer; PE: Preeclampsia. 

Of all the environmental risk factors, BMI had the most significant effect on the age at 
diagnosis. High BMI corresponded to earlier diagnoses of uterine cancer and uterine fibroids 
(three out of three pairwise comparisons significant), breast cancer and ovarian cancer (two out 
of three significant), and preeclampsia (P = 1.8 x 10-3 comparing first and third tertiles). Those 
with high LL scores tended to have earlier diagnoses of endometriosis, ovarian cancer, and 
uterine fibroids. The high NPD tertile (3) resulted in a significantly earlier diagnosis than the 
other tertiles for breast cancer, endometriosis, ovarian cancer, and uterine fibroids. No 
phenotypes had three out of three significant comparisons between the SL tertiles, but the 
highest SL tertile was associated with earlier diagnosis of endometriosis, while the lowest SL 
tertile was associated with a later diagnosis of uterine fibroids. 

Next, we performed the same time-to-event analyses for the lifestyle variables: AU, 
SK, ST, and SM (Figure 4).  The different AU tertile groups didn’t show significant differences 
for age at diagnosis, except for between the first and second tertiles in breast cancer (P = 2.2 x 
10-3); those who drink lightly get diagnosed with breast cancer earlier than those that drink
moderately. Similarly, different levels of sedentary minutes also didn't significantly impact
diagnosis except for between the first and third tertiles in breast cancer (P = 4.4 x 10-2), with
those in the high SM curve, get diagnosed later than the low SM group. Smokers in the third
tertile get diagnosed with uterine fibroids earliest (P vs Low = 2.3 x 10-3, P vs Medium = 1.8 x
10-11). Breast cancer cases in the lowest tertile of steps get diagnosed latest (P vs Medium =
8.6x10-5, P vs High = 1.4x10-2), this could be confounded by age as older women likely take
fewer daily steps. For preeclampsia and uterine cancer cases, those in the third tertile of steps
get diagnosed latest.
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Figure 4: time-to-event analyses for lifestyle measurements (a - alcohol use, b - sedentary minutes, c - smoking, 

and d - steps). Each panel shows three “survival” curves per phenotype, stratified by the value of the environmental 

measure where 1 is the lowest tertile and 3 is the highest tertile. The x-axes represent age at diagnosis (Dx). Also 

indicated in each grid cell are the p-values of pairwise log rank comparisons between those three curves. Any p-

values less than 0.05 are annotated with an asterisk. BC: Breast Cancer; UF: Uterine Fibroids; UC: Uterine Cancer; 

Endo: Endometriosis; OC: Ovarian Cancer; PE: Preeclampsia 

3.4 Genetic risk effects vary by environmental context 

We assigned every individual to a genetic risk tertile (low, medium, high) and an environmental 
exposure level (low, medium, high), the combinations of which resulted in nine sub-groups. 
Within each of the sub-groups, we computed the odds ratio of the phenotype relative to the 
medium-medium group. We also performed stratified logistic regressions to estimate the PRS 
and environmental measurement effects. Because NPD and NSD scores were highly correlated, 
we only tested NPD. First, we focused on the three remaining SDoH and BMI (Figure 5). 

304



Figure 5: All odds ratio and logistic regression tests performed for BMI and SDoH. The environmental factors are 

(a) BMI, (b) loneliness, (c) neighborhood physical disorder, and (d) stress. The upper left 3x3 grid in each pane

shows the odds ratios of the phenotypes in each cell. The rightmost column shows regression coefficients stratified

by environmental tertile. The bottom row shows regression coefficients stratified by genetic risk. The bottom right

cell shows a histogram of the environmental variable, with the cutoffs between the tertiles marked. BC: Breast

Cancer; UF: Uterine Fibroids; UC: Uterine Cancer; Endo: Endometriosis; OC: Ovarian Cancer; PE: Preeclampsia

The BMI tertiles were split at 25.7 and 32.3, which are near the conventional cutoffs for 
overweight (25) and obese (30). At all levels of genetic risk (low, medium, and high), BMI was 
positively associated with preeclampsia, uterine cancer, and uterine fibroids. BMI was 
negatively associated with breast cancer. Chronic loneliness and stress are known to be 
detrimental to long-term health. In the lowest genetic risk group, loneliness was positively 
associated with endometriosis. Those in the medium and high loneliness groups were more 
susceptible to genetic risk of ovarian cancer, preeclampsia, and uterine cancer. 

Next, we focused on modulating effects of lifestyle factors, including the two Fitbit 
variables, smoking, and alcohol use (Figure 6).  
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Figure 6: All odds ratio and logistic regression tests performed for the lifestyle variables. The environmental 

factors are (a) alcohol use, (b) sedentary minutes, (c) smoking, and (d) steps. The upper left 3x3 grid in each pane 

shows the odds ratios of the phenotypes in each cell. The rightmost column shows regression coefficients stratified 

by environmental tertile. The bottom row shows regression coefficients stratified by genetic risk. The bottom right 

cell shows a histogram of the environmental variable, with the cutoffs between the tertiles marked. BC: Breast 

Cancer; UF: Uterine Fibroids; UC: Uterine Cancer; Endo: Endometriosis; OC: Ovarian Cancer; PE: Preeclampsia 

AU had a highly skewed distribution, so the cutoffs between the three tertiles were close 
together (1.7 vs 2.0). The effect sizes of the PRSs for breast cancer, endometriosis, and uterine 
cancer were strongest in the tertile with the highest drinking scores. Notably, SK had an inverse 
effect on breast cancer and uterine fibroids at all levels of genetic risk. Since the models were 
adjusted for age, it is unlikely that age is confounding these results. Additionally, within the 
lowest smoking group, the PRS coefficient was not significant, but it was significant for the 
medium and high smokers. SM had a bimodal distribution. Due to the smaller sample size of 
the Fitbit data, most of the test statistics were not significant. However, the breast cancer PRS 
was significantly associated with breast cancer for those who were the most sedentary. 
Similarly, most of the effect sizes for the steps tests were not significant, but the effect of the 
breast cancer PRS was significant in the group that took the fewest daily steps on average. 

4 Discussion 

In this study, we evaluated the effects of environmental variables on women’s health 
outcomes. Specifically, we looked at effects on age at diagnosis and modulation of genetic risk. 
In 145,563 women in AOU, we analyzed six risk models for women’s health diseases. From 
there, we calculated stratified effect sizes for each PRS for tertiles of each environmental 
measurement. Overall, we showed that genetic risk models are significantly impacted by 
different environmental contexts. In general, the most severely affected group of the 
environment had the strongest effect of the PRS and often resulted in the earliest. These 
findings underscore the necessity of integrating diverse environmental and social factors into 
disease risk models to capture the full spectrum of influences on health. 

Of the 12 PRSs tested based on their performance in the PGS catalog, nine showed 
significant positive associations with their respective phenotypes, with breast cancer 
demonstrating the strongest association. The disparity between the sample population used to 
create these risk scores and the AOU biobank likely influenced these results, as PRS 
performance is highly sensitive to population mismatch41. There were differences between the 
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derivation datasets and AOU's unique composition, with about half of the genomic dataset 
comprising participants of non-European ancestry42. This highlights a key drawback of existing 
PRSs, which are often based on European populations, limiting their relevance for non-
European individuals. Notably, genetic risk did not significantly affect age at diagnosis for the 
six best risk scores, aligning with expectations, as these scores were derived from studies 
evaluating lifetime disease risk rather than onset. Factors such as SDoH and environmental 
influences, often correlated with race and ancestry, also play a role in disease susceptibility. 

BMI has been significantly associated with a multitude of gynecological conditions43. 
In the current study, we have demonstrated that high BMI can serve as a risk factor for earlier 
diagnosis of breast, ovarian, and uterine cancer as well as uterine fibroids. Furthermore, BMI 
was found to be associated with preeclampsia, uterine cancer and uterine fibroids, across all 
genetic risk groups. Preeclampsia is a pregnancy-related condition, so it is possible that several 
of the environmental risk factor measurements (BMI, activity levels) may not be representative 
of the woman’s environment at the time of onset as these variables are affected by pregnancy. 
However, we aimed to evaluate average lifestyle trends, including time leading up to 
pregnancy. These findings, in conjunction with previous reports on metabolism-related genes 
on various female cancer types44,45, emphasize the importance of incorporating environmental 
factors, especially BMI, for a holistic understanding of disease risk and health outcomes. 

The lowest genetic risk groups for endometriosis, preeclampsia, ovarian cancer, and 
uterine cancer showed positive associations at multiple levels of loneliness. This highlights the 
profound impact that social and psychological factors can have on physical health. By 
considering and stratifying risk factors based on both genetic and environmental factors, we 
can potentially facilitate earlier detection of health burden across diverse population groups. It 
allows us to identify individuals who, despite having a low genetic risk, may still be at high 
overall risk due to adverse environmental or social conditions, and ultimately enhance health 
outcomes for a broader spectrum of the population. 

Our study has several limitations. One limitation is that EHR-based phenotyping can 
be challenging for complex disorders, especially in women’s health diseases which are often 
under-diagnosed, such as uterine fibroids46 and endometriosis47. Phenotyping algorithms have 
been previously designed to compute phenotypes more accurately than ICD codes alone. Their 
use in our study is restricted by reliance on clinical notes48, which are not available in AOU. 
Other large genomic biobank studies, have leveraged ICD- or PheCode-based case-control 
phenotyping1,49,50. While the accuracy of ICD codes alone varies across the phenotypes, a key 
advantage of large biobank data is that the substantial sample size can help mitigate the impact 
of noise introduced by imprecise phenotyping, leading to more robust statistical associations51. 

Another limitation of our study was that we used age at the first diagnosis code of a 
condition as a proxy for disease onset. Depending on how patients move between healthcare 
systems, a common occurrence in the EHR is that a condition may have been diagnosed earlier 
at a different facility, but the corresponding diagnosis code is entered into the EHR only after 
the patient joins a new healthcare system. This introduces potential noise into the age variable, 
as the true onset might have been recorded elsewhere or at a different time.  However, since 
many of our sample sizes were large enough to yield significant effects, which should have 
counteracted the noise. We found that higher-risk environmental groups typically had earlier 
diagnoses. Given the EHR data, it can be hard to disentangle earlier diagnosis due to earlier 
onset versus earlier diagnosis due to increased vigilance based on existing risk factors.  
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Survey data are notoriously challenging to work with, so we were also limited by 
potential noise introduced by the self-reporting process. To mitigate error, we divided the 
participants into subgroups by environmental variable tertiles rather than relying on the exact 
quantitative measures. However, stratifying the individuals into subgroups reduced the sample 
size and statistical power for each regression. The observations that smoking levels seemed to 
have non-monotonic effects (medium smokers get diagnosed later with breast cancer, 
endometriosis, and uterine fibroids) may stem from confounders in the survey measurements. 
Our overall approach, though it has a few limitations, has provided a practical and scalable way 
to examine multi-modal predictive and progression models of women’s health diseases. 

Due to systemic challenges faced by marginalized communities, such populations find 
themselves exposed to environmental stressors at greater rates52. Differing odds ratios for those 
with similar levels of genetic risk but different levels of environmental risk suggest that not 
including environmental risk factors in predictive models utilizing PRS could lead to inaccurate 
risk assessments and potentially overlook significant contributors to disease susceptibility. The 
current study identifies the dangers in reductionist approach to disease stratification and risk 
prediction, based solely on either genetics or environmental factors. This suggests that 
integrating both the genetic and environmental components into a specific disease model would 
help better classify individual risk.  

In the future, using nonlinear approaches for risk modeling which capture variable 
interactions such as multilayer perceptron could aid in more accurately representing complex 
relationships between genetics, environmental risk factors, and the phenotypes. While those 
types of models are harder to train, we can now take advantage of growing data repositories, 
including AOU, to develop generalizable models that capture important modalities of risk 
variables. We included eight environmental risk factors, four SDoH and four lifestyle 
measurements, which capture some, but not all, external influences. Future methodologies may 
include more risk factors but also should account for potential missing data, as it can be 
challenging to administer surveys and/or collect wearables data on a large scale. In the future, 
we also hope to replicate these results in additional biobanks. 

Complex systems approaches to incorporate multi-directional interactions between 
patients and their environment, such as those modeled here, are better suited to leverage the 
power of genomic data in making widely applicable, clinically relevant tools. Further attempts 
to strengthen the predictive ability of PRS models need not focus solely on improving the 
identification of relevant loci, but also relevant environmental risk factors including SDoH. By 
improving our understanding and application of PRSs, especially in underrepresented areas 
like women's health, we can enhance disease prediction, prevention, and personalized treatment 
strategies. 
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