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Illness related brain effects of neuropsychiatric disorders are not regionally uniform, with
some regions showing large pathological effects while others are relatively spared. Presently,
Big Data meta-analytic studies tabulate these effects using structural and/or functional
brain atlases that are based on the anatomical boundaries, landmarks and connectivity
patterns in healthy brains. These patterns are then translated to individual level predic-
tors using approaches such as Regional Vulnerability Index (RVI), which quantifies the
agreement between individual brain patterns and the canonical pattern found in the ill-
ness. However, the atlases from healthy brains are unlikely to align with deficit pattern
expressed in specific disorders such as Major Depressive Disorder (MDD), thus reducing
the statistical power for individualized predictions. Here, we evaluated a novel approach,
where disorder specific templates are constructed using the Kullback-Leibler (KL) distance
to balance granularity, signal-to-noise ratio and the contrast between regional effect sizes
to maximize translatability of the population-wide illness pattern at the level of the indi-
vidual. We used regional homogeneity (ReHo) maps extracted from resting state functional
MRI for N = 2, 289 MDD sample (mean age ± s.d.: 63.2 ± 7.2 years) and N = 6104
control subjects (mean age ± s.d.: 62.9 ± 7.2 years) who were free of MDD and any other
mental condition. The cortical effects of MDD were analyzed on the 3D spherical surfaces
representing cerebral hemispheres. KL-distance was used to organize the cortical surface
into 28 regions of interest based on effect sizes, connectivity and signal-to-noise ratio. The
RVI values calculated using this novel approach showed significantly higher effect size of
the illness than these calculated using standard Desikan brain atlas.
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1. Introduction

The effects of neuropsychiatric illnesses on brain structure and function are not regionally
uniform; pathological processes impact some areas while sparing others, leading to formation
of illness-specific deficit patterns.1,2 Neuroimaging can capture these deficit patterns as case-
control differences in functional and structural biomarkers including cortical grey matter thick-
ness, white matter integrity, hypoperfusion, etc. The summary of the findings is tabulated as
regional effect sizes for brain areas derived from atlases that parcellate the cerebral landscape
using structural landmarks, cellular organization or functional connectivity patterns. The un-
derlying premise stems from basic neuroscience, lesion studies and functional brain mapping
that shows that cortical landscape can be represented as parcels of functionally specific and in-
terconnected areas. Large and inclusive meta-analytic studies conducted by big data consortia,
such as the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Consor-
tium3,4 use these maps as a principle way to report disease-related brain findings. These studies
perform “Big Data” level analyses that use these summary regional deficit data aggregative
findings from thousands of subjects from multiple studies/cohorts/geographic location to fur-
ther refine these patterns by eliminating regionally/ethnic or site-specific heterogeneity leading
to illness patterns that are reproducible across diverse cohorts.5

The patterns published by ENIGMA across neuropsychiatric disorders served as the basis
for translating Big Data to the individual level by measuring the agreements between indi-
vidual brain and those expressed in a disorder.5 A shortcoming of this approach is that the
standard atlases used by ENIGMA to summarize illness-related regional effect sizes may or
may not capture the regional pattern and the granularity of the illness effects on the brain.
ENIGMA uses atlases that are designed to maximize the regional contrast of the effects of
neuropsychiatric illnesses. An alternative strategy is to report the effects of the illness at the
spatial resolution of the neuroimaging data. However, this approach also has shortcomings: a)
the voxel-wise data has much lower signal-to-noise ratio (SNR) because averaging across re-
gions with uniform effects of the illness minimizes the noise, while maintaining the signal and
b) spatial resolution, brain coverage and other data collection parameters vary from cohort to
cohort, making reporting and meta-analytical aggregation a challenge. Here, we propose an
alternative approach aiming to derive a disorder specific brain parcellation method that maxi-
mizes the regional ability to separate cases from controls while maximizing the SNR (through
the size of the regions) and contrast between affected/unaffected areas of the brain.

We developed this approach to study the effect of major depressive disorder (MDD) on
the regional homogeneity (ReHo) index to pilot this approach. MDD is the most common
severe mental illness affecting up to 30% in the lifetime of the population.6 Despite its high
prevalence, the neuroimaging findings in MDD have been affected by poor reproducibility.7

MDD does not exert a strong neurodegenerative effect on brain structure and findings of meta-
analytical studies suggest that MDD is associated with only small (Cohen’s d = 0.01 − 0.1)
structural effect sizes.8–11 Instead, the MDD-related effects on the brain are likely manifested
as a reduction in regional cerebral blood flow (rCBF)12 especially in cingulate, prefrontal and
temporal areas.13,14 ReHo is a coefficient measuring the temporal coherence of the resting state
BOLD functional MRI time-series in neighboring voxels.15,16 Lower regional ReHo in patients
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with MDD versus controls are commonly reported and is often interpreted as evidence for less
synchronized local neural activity/connectivity.17–19 Interpreting the temporal correlations of
BOLD signals between neighboring voxels as deficits in neural connectivity is speculative,20,21

nonetheless, ReHo is a robust and replicable measure that has been validated in human and
animal research.22–24 We and others have shown that ReHo is physiologically linked to rCBF
and about 40-60% of the variance in underlying rCBF variations.25 We hypothesize that
reduced ReHo reported in MDD captures the hypoperfusion in affected individuals.

Specifically, we show that the use of the ad-hoc MDD-specific atlas based on the maximiz-
ing the separation of regional illness effects can also maximize the translatability of the Big
Data findings to the individual level by deriving the contrast between affected and unaffected
areas. We chose MDD because it is associated with regionally specific reductions in cerebral
blood flow (rCBF)12 including cingulate, prefrontal and temporal areas, while other parts of
the brain show no or even elevated rCBF.13,14 Creating an ad-hoc MDD-specific brain par-
cellation that averages the signal across regions with consistent effect of the illnesses, based
on the ability to separate cases and controls, can increase SNR and provide disorder and
functionally specific pattern of illness related changes. The overall intention is to develop this
parcellation approach that is based on capturing the contrast between areas that show deficits
and unaffected areas for future meta-analytical studies of MDD where participating sites will
use the map for reporting the effect sizes and eventually will use the combined meta-analytical
effect size pattern to perform individual prediction of similarity to the illness. Specifically, we
propose to use the maps to power the Regional Vulnerability Index (RVI) that measures the
similarity between an individual brain and the expected patterns derived from large scale
meta-analyses using a representative psychiatric illness, such as MDD.

The RVI approach assumes that the meta-analytic effect-sizes derived from such large
meta-analyses can serve as the ‘ground truth’ for expected disorder-specific deficit patterns
and that the similarity between individual and disorder pattern may serve as a biomarker.
The utility of this approach has been demonstrated by showing that the white matter RVI
for schizophrenia predicted treatment resistance in schizophrenia better than any individual
imaging measure.1 We later demonstrated the similarity in white matter deficit patterns across
psychiatric illnesses, suggesting that RVI serves as an important index for cross-disorder re-
search.26,27 Here, we present an RVI that is based on the MDD-specific atlas that was built
based on the regions that show effect size of MDD versus unaffected regions. Specifically, we
show that optimizing the granularity of the underlying brain parcellation schema based on the
balance between regional specificity and SNR can improve the power of RVI when translating
these at level of the individual. Another novelty of our approach is to use the Kullback-Leibler
(KL) distance – a rigorously defined distance between probability distributions – to optimize
the underlying disorder-specific atlas by balancing granularity, SNR and effects of the illness.

2. Methods

Out of 22,000 available datasets from the first release, 1,780 (∼ 8%) datasets were unusable,
and 1,322 (∼ 6%) datasets failed to pass the AFNI processing steps due to poor image qual-
ity. The usable data sample consisted of 18,898 participants (8,833 males, 10,065 females;
mean age ± s.d.: 63.2 ± 7.5 years) with resting state functional MRI (rsfMRI). We used the
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UKBB parser software (https://github.com/USC-IGC/ukbb parser) to identify participants
with MDD and non-psychiatric controls based on ICD codes, medication information, symp-
tom severity, hospital records and self-reported diagnoses and other variables using previously
published schema. Recurrent MDD was defined as experiencing at least two major depressive
episodes in lifetime that required medication or hospitalization. Recurrent MDD subjects ex-
perienced on average 3.5 major depressive episodes in their lifetime.28 Regional homogeneity
(ReHo) maps were extracted from rsfMRI for the MDD sample (N=2,289, mean age= 63.2
± 7.2 years) (ReHo) and control subjects (N=6,104, mean age= 62.9 ± 7.2 years) who were
free of MDD and any other mental condition. Other participants were left unclassified because
the definitive conclusion on certain criteria could not be made or neurological and psychiatric
conditions (including stroke, cerebral ischemia or other disorders)28 were present.

2.1. Resting state functional MRI data acquisition, processing, analysis

UKBB rsfMRI data were acquired on 3 T Siemens Skyra scanners with the standard Siemens
32-channel receive head coil using the following parameters: TR = 735 ms, TE = 39 ms,
spatial resolution of 2.4-mm isotropic voxels, matrix size = 88 Ö 88 with 64 axial slices, num-
ber of volumes = 490, flip angle = 52◦ and multi-band acceleration factor = 8. A separate
single-band reference image was acquired and used as the reference scan for head motion cor-
rection and alignment to other modalities.29 The resting state analysis workflow developed
by the ENIGMA consortium was used to process the rsfMRI data; processing steps have
been described in full detail in prior publications.30,31 The analysis workflow uses Marchenko-
Pastur principal component analysis denoising32 to improve SNR/temporal SNR of the time
series data. In this workflow, a transformation is computed registering the base volume to the
ENIGMA EPI template, which is used as a common anatomical spatial reference frame for
registration purposes. This step was followed by 3D deconvolution of methodological covari-
ates, and regression of the global signal.33 Each functional volume was registered to the volume
with the minimum outlier fraction for head motion correction, where each transformation was
concatenated with the transformation to standard space, to avoid unnecessary interpolation.
We removed the effects of the following nuisance variables by using them as covariates using
multiple linear regression analysis: the six motion parameters and their temporal derivatives,
and time courses from the local white matter and cerebrospinal fluid from lateral ventricles.
Motion was estimated as the magnitude of displacement from one time point to the next
including neighboring time points and outlier voxels fraction (> 0.1). Time points with exces-
sive motion (> 0.2mm) were excluded from further statistical analysis. Images were spatially
normalized to the ENIGMA EPI template in MNI standard space for group analysis. The
preprocessed data was then used for ReHo calculations. In the whole sample, the average mo-
tion, average outlier voxels fraction and average time points censored fraction were 0.12 mm,
0.004 and ∼ 0.13 respectively. The preprocessed data was then used for ReHo calculations.

2.2. Regional Homogeneity (ReHo) analysis

ReHo was designed to investigate changes in local spontaneous brain activity by performing a
nearest neighbor analysis of similarity of the BOLD time-series and assigning a score, called
Kendall’s coefficient of concordance (KCC)16 per voxel. The KCC score is calculated per voxel
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based on signals from neighboring voxels as: W = (
∑

iR
2
i − nR2)/( 1

12K
2(n3 − n)). Here, W is

the KCC among given voxels, ranging from 0 to 1; Ri is the sum rank of the ith time point;
R = ((n + 1)K)/2 is the mean of the Ri’s; K is the number of time series within a measured
cluster (K is set to be 7, 19, or 27), and n is the number of ranks (= number of volumes).16 K

was set to be 27, which is appropriate for covering all directions in 3D space and to optimize
the trade-off between mitigation of partial volume effects and generation of Gaussian random
fields.17 For each subject, the ReHo map was computed in 3D volumetric space using the
AFNI-command ‘3dReHo’. These maps were used to extract regional ReHo values for the
regions of interest for post-processing.

2.3. Computation of reference brain image and hemispheric mesh

Clustering analyses were performed using the 2D spherical manifold defined by the hemi-
spheric surfaces from the average ReHo brain image (avBrain), that was obtained as
the arithmetic average over the entire dataset of N=8,393 (registered and normalized) ReHo
images. After computing avBrain, we manually edited it to separate it into cerebrum and two
hemispheres. The marching cube algorithm was used to extract uniform triangulated mesh
of K = 5068vertices {VER1,VER2, . . . ,VERK} at uniform 1 mm spacing. We refer to this set
of vertices as the average boundary mesh (avMesh). Each vertex VERi in avMesh is
identified by its 3 coordinates [xi, yi, zi] in 3D space. This procedure is illustrated in Fig. 1.

Fig. 1. Reference brain image avBrain and a hemispheric mesh computation to generate avMesh.

2.3.1. Registration of the average cortical mesh onto individual ReHo images

Matching between the discretized boundary avMesh and each ReHo image I(n), for a given
subject n, cannot be performed using affine transformations and required a nonlinear registra-
tion where each cortical vertex VERi of avMesh was matched to a single voxel in I(n), namely
the voxel of I(n) that was geometrically closest to VERi. Other common approaches to archive
this registration includes averaging over a spherical kernel and averaging over the normal pro-
jection. The intensity Ji(n) of a cortical vertex VERi is the intensity of its matching voxel
in the image I(n). After registration was completed for all vertices of the average boundary
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mesh avMesh, then each subject could be characterized by a boundary pattern J(n) where
each cortical vertex VERi of avMesh has the image intensity Ji(n) computed via registration.
That is, the n−th subject is described by a list of K numerical features, i.e., the K intensities
{J1(n), J2(n), . . . , JK(n)} indexed by the K cortical vertices {VER1,VER2, . . . ,VERK} on the
average boundary mesh avMesh.

2.4. Parcellation of the average boudary mesh: SNR vs. granularity

For each cortical vertex VERi on avMesh, we computed three boundary parcels parD(i)

centered at VERi and having three different sizes D = 1, 3, 5, to capture local information in
the ReHo image at different granularity levels.

The parcel parD(i) includes the D closest neighbors of the vertex VERi in avMesh. Hence,
parcel par1(i) only contains the boundary vertex VERi, parcel par3(i) contains VERi and its 2
closest neighbors in avMesh and par5(i) contains VERi and its 4 closest neighbors in avMesh.
The radius of par3(i) roughly ranges between 1 and 3.1 voxels with a mean radius of 1.9 voxels;
for par5(i), the parcel radius ranges between 1.4 and 3.6 voxels, with a mean radius of 2.5
voxels.

2.5. Kullback-Leibler distance between two probability distributions

Let us consider two multivariate probability distributions P and Q on RD; for instance, P and Q

can be determined by two probability density functions fP (x) and fQ(x) defined for x ∈ RD. The
Kullback-Leibler (KL) divergence34,35 between P and Q, denoted as KL(P,Q), classically
measures how much Q differs from P . When the density functions fP and fQ are known, the
KL divergence KL(P,Q) is given by the explicit formula

KL(P,Q) =

∫
fP (x) log

fP (x)

fQ(x)
dx ≥ 0.

Note that KL(P,Q) ̸= KL(Q,P ) in general. One defines a symmetric KL distance36 between
P and Q by the formula:

KLdis(P,Q) = KLdis(Q,P ) = KL(P,Q) +KL(Q,P ) ≥ 0.

We have that KLdis(P,Q) = 0 if and only if P = Q

The KL distance has played a key part in theoretical and applied statistics for more than
40 years.37 It quantifies the discriminating power of the well-known log-likelihood statistical
test to discriminate between two probability models P and Q based on N random observed
vectors x1, . . . , xN of dimension D generated by an unknown probability distribution. This
log-likelihood test between P and Q is an optimal test that is based on comparing the log-
likelihood of observations x1, . . . , xN under P with their log-likelihood under Q. As such it
provides a most sensitive measure to compare signal intensities over multiple locations.

When the probability distributions P and Q have multivariate normal density functions
fP (x) and fQ(x), respectively, defined for all x ∈ RD, then fP and fQ are determined by their
respective mean vectors mP , mQ and their D×D covariance matrices SP , SQ. In this case, the
KL distance between P and Q is computed using the explicit formula:

KLdis(P,Q) = −D +
1

2
trace(S−1

P SQ + S−1
Q SP ) +

1

2
(mP −mQ)

T (S−1
Q S−1

P )(mP −mQ)
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where AT denotes the transpose of matrix A.

2.6. Discriminating score of boundary parcels

Within the average boundary mesh avMesh, we intend to identify which small cortical parcels
parD(i), D = 1, 3, 5, have high discriminating power between CTL and MDD subjects. To this
end, for each parcel, we introduce a notion of discriminating score as follows.

For any vertex VERi and boundary parcel parD(i) of size D centered around VERi, the
boundary vertices belonging to parD(i) are indexed by their D indices i1, i2, . . . , iD, with
i1 = i. For the n-th subject, these D vertices define a vector Wi(n) of D intensities pre-
computed above by registration of avMesh to the subject’s ReHo image I(n). Namely we set
Wi(n) = [Ji1(n), Ji2(n), . . . , JiD(n)].

Hence, we define two subsets of vectors H1 and H0 in RD of respective sizes N1 and N0

(N1 = 2, 289, N0 = 6, 104, here) by:

• H1 = set of all vectors Wi(n) such that subject n belongs to the MDD class
• H0 = set of all vectors Wi(n) such that subject n belongs to the CTL class

The N1 = 2, 289 observed vectors Wi(n) in H1 will be viewed as a sample of N1 random vectors
generated by a multivariate normal P1 with mean vector m1 and D × D covariance matrix
S1. Similarly, the N0 = 6, 104 vectors Wi(n) in H0 provide a sample of size N0 generated by
a multivariate normal P0 with mean vector m0 and D ×D covariance matrix S0. The vectors
m0,m1 and the matrices S0, S1 are unknown but can be estimated by the following sample
means and sample covariances:

mℓ =
1

Nℓ

∑
Wi(n)∈Hℓ

Wi(n), covℓ =
1

Nℓ

∑
Wi(n)∈Hℓ

(Wi(n)−mℓ)(Wi(n)−mℓ)
T , for ℓ = 0, 1.

When KLdis(P1, P0) is large, the two probabilities P1 and P0 are very different, meaning that
the boundary parcel parD(i) has potentially high discriminating power between the CTL
and MDD groups. Hence, we define the discriminating score scoreD(i) of boundary par-
cel parD(i) as the KL distance KLdis(P1, P0) computed above. Clearly, the computation of
scoreD(i) for parcel parD(i) need to be repeated separately for each boundary vertex VERi,
where i = 1, . . . ,K. This yielded K = 5, 020 discriminating scores scoreD(i) at granularity sizes
D = 1, 3, 5, with one score per boundary vertex VERi. We can then re-order the vertices VERi

in decreasing order of their discriminating scores and display them in 3D space on the average
boundary mesh avMesh. We applied the method described for granularity sizes D = 1, 3, 5.

2.7. Implementation of discriminating score analysis

The methods outlined above required about 20 hours of computing time on a standard laptop
to compute the three discriminating scores scoreD(i), D = 1, 3, 5, for each one of the K = 5, 020

boundary vertices VERi generated at scale 5x5x5. This led to a positive first assessment of
our methodology at a reasonable computing cost, and a substantial analysis of the spatial
continuity of our 3 discriminating scores.

Since the brain ReHo images of our UKBB-MDD dataset and the corresponding average
brain images were actually discretized at a finer scale 2x2x2 (mm), we have then used the freely
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available Mango software38 to generate, at scale 2x2x2, a new triangulated mesh avMesh2 of
L = 20, 025 boundary vertices Zs, s = 1, 2, . . . , L, densely located on the boundary of the average
brain. Of course, avMesh2 contained our initial coarser avMesh of K = 5, 020 boundary vertices
VERi, i = 1, 2, . . . ,K, discretizing the brain boundary at scale 5x5x5.

Our three discriminating scoreD(i), D = 1, 3, 5, initially computed for each VERi of avMesh
were then smoothly extended to scores scoreD(i), D = 1, 3, 5, for each Zs of avMesh2 using the
following fast spatial propagation algorithm. Specifically, for each vertex Zs of avMesh2, we
identified the list G(s) of all vertices VERi in avMesh which are at distance less than 5 mm from
Zs, and computed the discriminating score scoreD(s) of Zs as the average of scoreD(i) over all
vertices VERi belonging to G(s); this procedure was carried out for D = 1, 3, 5. This method
for spatial extension was useful to generate better 3D visualizations of the most significant
discriminating brain boundary vertices on avBrain.

2.8. Regional Vulnerability Index (RVI) calculations

RVI scores were calculated using the ‘RVIpkg’ in the R software based on our previous publi-
cation39 with some revisions. The original RVI calculated the correlational agreement between
an individual’s regional brain measures and the pattern of regional MDD-related brain cal-
culated using a standard atlas.5 Here, we used the regions identified by the cluster analysis
to compute the effect sizes for MDD cases vs. controls. Next, we used these effect sizes to
calculate RVI for each subject as the dot product between vectors Z = (Zi) and E = (Ei), nor-
malized by the dimensions of the vector using the equation RV I =

∑N
i=1 ZiEi, where Z is the

vector of deviation from the mean and E is the vector of meta-analytical effect size (Cohen’s
d coefficients) for the i-th regional measure for MDD. N is the dimension of the vector, i.e.,
the total number of imaging phenotypes for that modality. The modified RVI was calculated
for the whole-brain phenotype vector and for cortical, subcortical and white matter modali-
ties. Positive RVI values indicate that the regional pattern of an individual coincides with the
expected pattern of MDD based on the overall effect sizes. We compared effect sizes for the
RVI-MDD vs. the effect sizes obtained for individual regions identified by cluster analysis.

3. Results

3.1. Calculation of discriminatory boundary vertices

According to the procedure described in Sec. 2.3, for each one of the K = 5, 020 vertices
VERi from the brain boundary mesh, we computed three discriminating scores, namely,
score1(i), score3(i), score5(i), corresponding to the boundary parcels par1(i), par2(i), par5(i) of
sizes D = 1, 3 and 5, respectively, centered at each boundary vertex VERi. As explained above,
these scores quantify the discriminating power of statistical tests based on log-likelihood values,
using boundary parcels of different sizes. We implemented numerical simulations to compute
the respective statistical significance thresholds thr1, thr3, thr5 for score1(i), score3(i), score5(i).
For instance, whenever score3(i) < thr3, then vertex VERi has high probability of being not
discriminatory between the CTL and MDD groups. Table 1 reports the minimum (min),
median or 50%-quantile, 80%-quantile, significant thresholds (threshold) of the computed
discriminating scores and finally the percentages of significant mesh boundary vertices for
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score1, score3, score5. We note that the highest percentage (30%) of significant vertices is
reached with score3.

Table 1. Discriminating scores for granularity sizes 1, 3 and 5.

min median 80% quant threshold significant vertices (%)
score1 0 .009 .020 .015 27%
score3 0 .030 .051 .045 30%
score5 0 .040 .070 .070 20%

Fig. 2. Histograms of the discriminating scores score1, score3, score5 computed from the 5,020 brain
boundary vertices VERi of avMesh. Each plot displays horizontally the values of the discriminating
score and vertically the associated frequencies.

Fig. 2 displays the histograms of the discriminating scores score1, score3, score5. The figure
shows that the distribution of score1, which has a peak at score1 = 0, is very different from
the distributions of score3 and score5. In fact, after horizontal rescaling of scores values, the
distributions of score3 and score5 become similar. This remark is confirmed by the calculation
of the correlation matrix of score1, score3, score5, showing that score3 and score5 are highly
correlated (corr = 0.89), while score1 is weakly correlated to either score3 or score5.

3.1.1. Spatial stability of discriminating scores

Clearly, the value of the discriminating score scoreD(i) computed at a vertex VERi may be
sensitive to the granularity size D. To address this problem, we proceeded as follows.

For each brain boundary vertex VERi in avMesh, we denote as VERi∗ its closest neighbor
within avMesh and let d(i) be the Euclidean distance between vertices VERi and VERi∗.

For each vertex VERi and any dimension D, the relative change relchD(i) of the discrim-
inating score scoreD(i) when one replaces VERi by its closest neighbor VERi∗ is defined by
relchD(i) = |scoreD(i)–scoreD(i∗)|

scoreD(i) . To quantify the spatial stability of scoreD(i) around a boundary

vertex VERi, we compute its Lipschitz coefficient LipD(i) = relchD(i)
d(i) , measuring the sensitiv-

ity of the discriminating score to small spatial changes. Hence, for each discriminating score,
lower values of its Lipschitz coefficients indicate higher spatial stability of the score.

Fig. 3(a) displays the histograms of Lip1(i), Lip2(i), Lip3(i) and shows that Lip1(i) is
stochastically larger than Lip3(i) or Lip5(i). This implies that score1 is significantly less spa-
tially stable than score3 and score5. This observation is consistent with the plots of the three
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Fig. 3. (a) Histograms of the Lipschitz coefficients Lip1, Lip3 and Lip5 of the discriminating scores
score1, score3, and score5, respectively; (b) corresponding cumulative distribution functions of Lip1,
Lip3 and Lip5. Plots show that score1 is significantly less spatially stable than score3 or score5.

Cumulative Distribution Functions of LipD, for D=1,2,3, denoted as CDFD and shown in
Fig. 3(b). The figure shows that, for all x = LipD, one has that CDF1(x) ≤ CDF3(x) and
CDF1(x) ≤ CDF5(x), again confirming that score1 is significantly less spatially stable than
score3 and score5. In fact, the plot in Fig. 3(b) confirms that score3 is stochastically the most
spatially stable of the 3 scores computed.

3.2. 3D visualization of discriminatory boundary vertices

Based on the analysis presented above, we concluded that score3, at granularity size D = 3, is
the most spatially stable, in a precise mathematical sense, hence providing the most valuable
information about which boundary vertices have most discriminatory power. This granularity
size was shown perform better than granularity sizes D = 1 and D = 5. We focus henceforth
on this granularity size to report our graphic illustration of the most discriminatory boundary
vertices. Accordingly, Fig. 4 displays the boundary vertices having highest discriminatory
score using score3, the discriminating score computed at granularity size D = 3, overlaid on
rendered brain.

3.3. Score based parcellation of brain boundary and RVI results

Using the Mango software on avBrain at scale 2x2x2, we generated a triangulated mesh
avMesh2 of 20,025 vertices and, for each such vertex, we computed a discriminating score,
namely score3, as seen above.

The triangulated mesh avMesh2 contained p triangles {TR1, . . . , TRp}, with roughly p ≈
40, 000. We extended our discriminating score3 to each triangle TRj, by computing the average
of the scores of the 3 vertices of TRj. After reordering the list of our p triangles in decreasing
order of their discriminating scores, we partitioned this ordered list of triangles into 6 successive
sub-lists S1, S2, . . . , S6 of similar sizes, ranging from 6, 000 to 7, 000 triangles. Next, for each
i = 1, . . . , 6 we computed disjoint ”watertight” connected components of the sub-list Si. Recall
that a set W of triangles is called watertight connected if any two triangles T and T ′ in W

can be linked by some chain of triangles T1 = T, T2, . . . , Tr = T ′ where any pair of successive
triangles have one edge in common, and where r is any integer.

After completion of this procedure, for each sub-list Si, we obtained a partition of our
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Fig. 4. Boundary vertices with highest discriminating scores (using score3 above 80% quartile),
overlaid on rendered brain with different views.

initial set of p triangles into q disjoint watertight connected components C1, . . . , Cq. Each Cs

is a finite set of small triangles on the surface of the average brain, defining a connected
sub-region REGs of the brain surface. We kept only the regions REGs which have a large
enough area (i.e., more than 250 vertices) and implemented a simple procedure for pragmatic
regrouping of the very small sub-regions. At this point we obtained a score-based parcellation
of the brain surface into sub-regions denoted REGs, which we used to compute RVI values.

3.4. Effect sizes for ReHo values in clusters vs. RVI

The Cohen’s d effect sizes were calculated for the 28 spatial distinct components that were
identified based on the ability to discriminated between MDD cases and controls and were
larger than 200 connected vertices. The effect sizes varied from d = 0.25, p = 10−24 for the ReHo
values calculated for the highly discriminating component in Fig. 4 to d = 0.00, p = 1.00 for
the component that showed no effects of MDD. We next calculated the individual RVI using
the effect sizes for the 28 components. Subjects with MDD showed highly elevated RVI-MDD
versus controls (0.16 ± 0.01 vs -0.01 ± 0.01), Cohen’s d = 0.36, p = 10−55. We observed that
the effect size for RVI were numerically stronger than effect sizes for any of the individual
components, as shown in Fig. 5.

4. Discussion

Regional cerebral hypoperfusion in individuals with MDD was first described over three
decades ago.14,40,41 Specifically, with the hypoperfusion of limbic-frontal-temporal circuitry,42

this approach was deemed replicable, informative of the clinical state and predictive of treat-
ment outcome.14,43 Our study proposes and evaluates a novel approach to categorize and
parcellate the cortical landscape based on the balance between the size of the continuous re-
gion and the effect size to discriminate between cases and controls. This method achieves the
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Fig. 5. Effect-size of RVI compared to effect-size for individual components. For instance, the com-
ponent p11 represents the first parcellated region and the first cluster and and p01 represents the
tenth parcellated region and the first cluster respectively.

optimal granularity to quantify the effects of the illness on the brain that maintains high SNR
while preserving functional specificity to the areas that show effects of the illness. The pro-
posed methodologies can be viewed as development of a disorder specific atlas that is focused
on subdivision of the overall cerebral cortex into a set of 10 levels based on their ability to
discriminate cases versus controls. This regional variability in effect sizes is then used to build
a novel biomarker - RVI - that summarizes the agreement between individual brain patterns
and the expected pattern of the illness. We found that the RVI built on these regions showed
numerically higher effect size of the illness than the best effect sizes (level 1) for regional
measures (Cohen’s d=0.36 versus 0.25). This suggested that individual agreement with the
pattern served as a better phenotype than hypoperfusion in any single area of the brain, even
those specifically chosen to provide the best description.

We showed that effects of the ReHo-based measurements can be used to summarize hy-
poperfusion patterns in MDD. The granularity analyses demonstrated that areas with best
discrimination between MDD cases and controls involve middle and inferior frontal and pari-
etal regions that were previously identified by PET and SPECT studies.44,45 However, the
effect sizes for these regions were modest (∼0.22-0.25) suggesting that the lower ReHo values
in these areas in an individual are not specific to MDD and are unlikely to have clinical rel-
evance; a further detailed study on the clinical significance of these findings will be needed.
In contrast, the ReHo-based RVI for MDD built on the overall contrast across all ten levels
showed significant elevation in individuals with MDD and overall had numerically larger effect
sizes than these for regional ReHo. The RVI approach is not new or specific to ReHo. It was
first applied in schizophrenia, where higher RVI values for schizophrenia have been linked to
treatment resistance, cognitive deficits, to family risks for the disease2,5,5,39 and was shown to
be applicable to other illnesses or conditions.46,47 The RVI approach has been proposed as a
prospective tool for early detection of brain patterns shifting towards a particular condition,
and may provide an early predictive signal for other neurological and psychiatric illnesses.39,48

However, all previous work was focused on structural brain deficits. The novelty of this work
is to show the applicability of RVI for functional fMRI measures, here using ReHo, which
we posited as a proxy for rCBF signal and can potentially be altered by therapies such as
medication. It is also novel because the RVI was built on the regional measurements that were
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specifically identified for this purpose and balanced the size of the regions versus the disorder
related contrast. Still, how RVI measures derived using ReHo correlate with clinical measures
of MDD severity and whether there exist identifiable brain regions or patterns need to be
explored.

There are limitations to this study. This analysis was focused on evaluation of the MDD-
specific versus cortical-area parsed parcellation to tabulate effect sizes of MDD for further
RVI analyses. Future studies need to evaluate MDD-specific versus other connectivity-atlases.
It is likewise important to evaluate the ability of RVI calculated using MDD-specific versus
standard atlas approaches to predict clinical and cognitive variance among subjects. We cal-
culated rsfMRI ReHo signal that included global signal regression (GSR). The global signal
in rsfMRI data is associated with head motion, respiration and cardiac rhythms.49,50 GSR is
a necessary pre-processing step for ReHo analysis because these non-physiological factors can
artifactually increase ReHo through global autocorrelation51,52 and exerts complex effects on
ReHo measures.19,53 However, other studies demonstrated that GSR also carries diagnosis re-
lated variance.54–56 No analyses were performed to examine whether our study findings would
differ without GSR, a shortcoming of the rsfMRI data processing. In addition, testing of the
outcomes in this study were limited to subjects in the same cohort. The narrow aim of this
study was to evaluate the novel parcellation approach and show that RVI derived from these
regions carried higher effect size than the regions specifically selected for their high discrimi-
nation of illness effect. Follow up studies will evaluate if the pattern of MDD ReHo contrasts
can be replicated in other cohorts and further this pattern by performing meta-aggregation
to improve this disorder specific parcellation schema. In addition, our analysis did not focus
on MDD subtypes and this need to be considered in future studies.

The method presented in the manuscript can be extended to other types of neuropsychiatric
disorders where similar datasets are available with minimal changes. Future studies need to
examine the granularity size more extensively to allow for a wider range of scales. From the
viewpoint of computational cost, the method presented is scalable as the most computationally
expensive steps of the algorithm, namely vertex registration and score computation, are highly
parallelizable.
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