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Autism Spectrum Disorder (ASD) encompasses a range of developmental disabilities marked by 
differences in social functioning, cognition, and behavior. Both genetic and environmental factors are 
known to contribute to ASD, yet the exact etiological factors remain unclear. Developing integrative models 
to explore the effects of gene expression on behavioral and cognitive traits attributed to ASD can uncover 
environmental and genetic interactions. A notable aspect of ASD research is the sex-wise diagnostic 
disparity: males are diagnosed more frequently than females, which suggests potential sex-specific 
biological influences. Investigating neuronal microstructure, particularly axonal conduction velocity offers 
insights into the neural basis of ASD. Developing robust models that evaluate the vast multidimensional 
datasets generated from genetic and microstructural processing poses significant challenges. Traditional 
feature selection techniques have limitations; thus, this research aims to integrate principal component 
analysis (PCA) with supervised machine learning algorithms to navigate the complex data space. By 
leveraging various neuroimaging techniques and transcriptomics data analysis methods, this methodology 
builds on traditional implementations of PCA to better contextualize the complex genetic and phenotypic 
heterogeneity linked to sex differences in ASD and pave the way for tailored interventions. 
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1. Introduction 
Autism Spectrum Disorder (ASD) encompasses a broad range of developmental conditions 
characterized by persistent deficits in social functioning, cognition, and restricted, repetitive 
behavior1. Individuals with ASD often experience challenges in communication, social 
interactions, and engage in repetitive behaviors or have narrowly focused interests2. The 
prevalence of ASD has been steadily increasing worldwide, affecting between 1 in 36 children and 
1 in 45 children according to recent meta-analyses and research by the Centers for Disease Control 
and Prevention (CDC)3,4. This diagnostic increase has brought significant attention to the urgent 
need for a deeper understanding of the underlying mechanisms of ASD. 

Research indicates that ASD is a heterogeneous condition, meaning that it can present very 
differently from one person to another, complicating efforts to pinpoint its causes5. Although it is 
widely accepted that both genetic and environmental factors contribute to the development of 
ASD, the exact etiological factors and their interactions remain unclear. Genetic studies have 
identified numerous genes associated with ASD, suggesting a strong hereditary component6–8. 
However, environmental factors such as prenatal exposure to certain drugs, complications during 
birth, and advanced parental age have also been identified as potential risk factors for developing 
ASD9,10. 

Moreover, neuroimaging studies have revealed differences in brain structure and function 
in individuals with ASD11–13. These studies have shown abnormalities in areas of the brain 
responsible for social behavior, communication, and sensory processing. Despite these advances, 
there is still much to learn about how these genetic and environmental factors interact to influence 
brain development and lead to the diverse array of symptoms observed in ASD. 

Neuroimaging and genomics exploration is essential for understanding ASD because these 
approaches provide complementary insights into the biological underpinnings of the condition. 
Neuroimaging techniques, such as MRI and fMRI, allow researchers to observe structural and 
functional differences in the brains of individuals with ASD; this imaging data helps to identify 
patterns and variations in brain development and connectivity that may contribute to ASD 
symptoms. Concurrently, genomics offers a window into the genetic factors influencing ASD risk, 
uncovering specific genes and genetic variants associated with the disorder. By integrating 
genomic information with neuroimaging data, research efforts can better explore how genetic 
predispositions affect brain structure and function, and vice versa. This combined approach is 
crucial for elucidating the complex interplay between genetic and neural mechanisms, ultimately 
enhancing our understanding of ASD and guiding the development of more targeted interventions.   
 
1.1.  Sex-wise disparity in ASD 
A significant aspect of ASD research is the observed sex-wise disparity in its prevalence. Males 
are diagnosed with ASD more frequently than females, with a ratio of approximately four-to-one3. 
This disparity suggests potential sex-specific biological factors that may influence the 
development of ASD. Several hypotheses have been proposed to explain this difference, including 
genetic differences in sex chromosomes, hormonal influences, and differences in brain structure 
and function between males and females12,14. Understanding these sex-specific factors is crucial 
for developing tailored diagnostic and therapeutic approaches for ASD. 
 
1.2.  Neuronal microstructure analysis in ASD 
Neuroscientific research has increasingly focused on the neuronal microstructure to uncover the 
subtle differences in brain form and function associated with ASD. Using diffusion MRI, 
microstructural analysis allows for the examination of small-scale variations in the brain's cellular 
architecture and can provide insights into the neural underpinnings of ASD. A recently developed 
microstructural analysis measures axonal conduction velocity, which is derived from parameters 
such as the g-ratio (the ratio of the inner to the outer diameter of the myelin sheath) and axon 
diameter15,16. Conduction velocity approximates the speed at which action potentials travel along 
axons, and deviations from the optimal speed can result in impaired neuronal communication. 
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1.3.  Genetic factors and the pseudo-autosomal region 
Genetic research has identified several candidate genes associated with ASD, many of which are 
in the pseudo-autosomal regions of the sex chromosomes17–19. These regions are of particular 
interest because they escape the usual X-inactivation process in females, resulting in a unique 
expression pattern that may contribute to the sex-wise disparity observed in ASD. Exploring these 
genetic factors, combined with microstructural data, can provide a more comprehensive 
understanding of the biological basis of ASD. 
 
1.4.  The ACE Network and NDA 
The Autism Centers of Excellence (ACE) program is an initiative funded by the National Institute 
of Mental Health (NIMH) aimed at advancing the understanding, diagnosis, and treatments of 
ASD. Established to support large-scale multidisciplinary research projects, the ACE program 
brings together leading experts from various fields like genetics, neuroimaging, and phenotypic 
science to foster collaboration. Its structure allows for the integration of novel methodologies and 
state-of-the-art technologies to ensure that research efforts are at the forefront of scientific 
discovery. Complementary to the ACE program is the NIMH Data Archive (NDA), a 
comprehensive database managed by the NIMH that serves to centralize and disseminate the vast 
array of data collected on mental health research. Together, the ACE program and the NDA create 
a synergistic environment to nurture and advance the field of ASD research. The ACE program 
generates rich multimodal datasets that feed into the NDA. By leveraging the comprehensive data 
available through the NDA, researchers can explore new hypotheses, validate findings, and 
translate discoveries into clinical applications more effectively. 
 
1.5.  Dimensionality in microstructural analysis 
A significant challenge in the analysis of neuronal microstructure data is the so-called “curse of 
dimensionality”. Microstructural processing pipelines typically generate data from over 200 
distinct brain regions for each individual participant, which when performed on a voxel-wise level 
results in millions of datapoints for each individual. In our study, which includes 213 participants, 
this results in a vast multidimensional dataset. Although an N=213 might be considered respectable 
in human neuroimaging research, the sheer number of predictors poses a challenge for attaining 
sufficient statistical power, reproducibility, and interpretation. As an addendum to the concept of 
“big data,” we suggest that researchers consider highly dimensional datasets such as this one as 
“wide data” that is subject to a different set of equally important challenges. 

Traditional approaches to address this issue involve feature selection to reduce the analytic 
search space. However, such techniques have inherent limitations. Firstly, they rely heavily on 
domain expertise, which may not always be available or infallible. Secondly, feature selection 
excludes certain predictors from the analysis before any machine learning algorithms can utilize 
them, thereby potentially limiting the scope of the analysis. While this approach can be beneficial 
when domain expertise is available, it can hinder exploratory analyses of new datasets. 

 
1.6.  Multimodal data fusion in health sciences 
The integration of multimodal neuroimaging and genetic data presents a significant opportunity to 
improve model performance resulting from the synergy of shared and complementary information 
across modalities. For ASD research, the known genetic and neurological bases provide a strong 
foundation for exploring the rich multimodal data space afforded by large-scale data repositories 
like NDA provides for the ACE program. However, emphasizing interpretable methods is of 
paramount importance if research findings are to be translated into clinical application. It is 
through this framework this study has sought to provide insights into the multimodal data space 
generated by combining neuroimaging and genetic features. 
 
1.7.  Novel approach: PCA and machine learning integration 
Our analysis aims to navigate the complex multidimensional space created by combining genetic 
and microstructural data modalities. To achieve this, we employ a novel implementation of 
principal component analysis (PCA) to identify unique characteristics of the dataset in an 
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unsupervised manner. PCA allows us to reduce the dimensionality of the dataset while retaining 
the within-class variation, thereby addressing the curse of dimensionality without relying on 
traditional feature selection methods, as well as retaining generalizability to unseen data. 

Following the unsupervised feature selection through PCA, we integrate the results into a 
traditional classification machine learning framework. This approach enables us to leverage the 
strengths of both unsupervised and supervised learning techniques, providing a more robust 
analysis of the data. By doing so, we aim to uncover novel insights into the relationship between 
genetic factors, neuronal microstructure, and ASD. 

The integration of advanced neuroimaging techniques and genetic data analysis holds great 
promise for unraveling the complex etiology of ASD. By addressing the challenges posed by the 
curse of dimensionality and leveraging advanced analytical methods, we can enhance our 
understanding of how the neuronal microstructure and genetic factors combine to form the autistic 
phenotype. This comprehensive approach not only advances our knowledge of ASD but also paves 
the way for the development of more effective diagnostic and therapeutic strategies tailored to the 
unique needs of individuals with ASD. 
 
2. Methods 
2.1.  Participants 
Participants included 213 (mean age=153.20 [in months], standard dev.=±35.22; age range=96–
215; 99 female [46.48%]) volunteers from Wave 1 of an NIH-sponsored Autism Centers for 
Excellence network. The study sample included 113 autistic individuals (mean age=150.19, 
standard dev.=±34.56; age range=96–215; 51 female [45.13%]) and 100 non-autistic individuals 
(mean age=156.60, standard dev.=±35.81; age range=97–215; 48 female [48.00%]). The 
diagnostic and sex ratios were intended to be balanced. All ACE GENDAAR Wave 1 (9/04/2012-
7/31/2022) neuroimaging, phenotypic, and genetic data were collected, processed, and archived 
on secure local compute servers under the following Internal Review Board (IRB) approvals: USC 
Approval #HS-13-00668; USC Approval #HS-18-00467; UVA Approval #22078; UVA IRB HSR 
#21361; GMU #00000169; and UVA #HSR-22-0423. As per the requirements of the US NIMH, 
de-identified and de-linked copies of all data were regularly submitted to the NDA as part of 
Collection #2021, where they are freely available for access to approved investigators. Data 
obtained by subsequent ACE GENDAAR Waves 2 and 3 (ongoing data collection) were not 
considered in this analysis. Informed consent was obtained from all participants and their legally 
authorized representatives. 
 
2.2.  Genetic data preparation 
2.2.1.  Analysis of copy number variant densities 
Using Bioconductor R, a karyotype map was created to visualize mutation densities20. Statistical 
differences were assessed between groups to determine mutation loci present in exclusively in 
ASD females, and vice versa. Loci were systematically compared to the locations of known genes 
using the UCSC genome browser, along with their exonic sections and prior association with 
ASD21. Copy number variants (CNVs) were identified from a set (N=196) of Manta-annotated 
variant-call format (VCF) files. The New York Genome Institute preprocessed and designed these 
files. Manta is a structural variant (SV) calling tool from Chen et al. that utilizes discordant read-
pair and split-read evidence to identify various CNVs, including insertions, deletions, 
translocations, inversions, and tandem duplications22. Manta-annotated VCF files for each subject 
were compared against a Homo sapiens (assembly GRCh38.p14) reference genome, which 
contains base-pair positions for transcripts, genes, exons, and introns for all 24 chromosomes, 
including sex-linked chromosomes X and Y. 
 
2.2.2.  Analysis of differential expression and functional enrichment analytics 
Whole blood transcriptome sequencing was performed on 370 individuals. Transcript-level 
abundances were quantified using Kallisto23. Tximport was employed to aggregate these 
transcript-level abundances into gene-level counts24. Differential expression analysis was 
conducted using the R package DESeq2, facilitating the identification of statistically significant 
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changes in gene expression across ASD-diagnosed individuals, and were compared across 
neurotypical cohorts with sex and diagnosis were examined for interaction effects25.  
 
2.3.  Conduction velocity data preparation 
2.3.1.  Image acquisition 
Diffusion, T1-weighted, and T2-weighted images were acquired from each participant. Diffusion 
images were acquired with an isotropic voxel size of 2x2x2mm3, 64 non-colinear gradient 
directions at b=1000 s/mm2, and 1 b=0, TR=7300ms, TE=74ms. T1-weighted MPRAGE images 
with a FOV of 176x256x256 and an isotropic voxel size of 1x1x1mm3, TE=3.3; T2-weighted 
images were acquired with a FOV of 128x128x34 with a voxel size of 1.5x1.5x4mm3, TE=35. All 
images were preprocessed to correct for common sources of error and bias in accordance with 
prior published work11,26. T1w/T2w ratio was calculated by performing N4-bias correction, 
rescaling image intensity, then dividing on a voxel-wise basis27,28. Diffusion images were analyzed 
using a single-shell constrained spherical deconvolution (CSD) to obtain 3 tissue CSD (3T-CSD) 
microstructure compartments (intra- and extra-cellular isotropic signal, and intra-cellular 
anisotropic signal) and a fixel-based analysis was used to measure axonal fiber density and cross-
section on a voxel-wise basis11,26,29,30. Despite obtaining multiple microstructure metrics using this 
methodology, only conduction velocity was examined here.  
 
2.3.2.  Conduction velocity determination 
The aggregate g-ratio was calculated on a voxel-wise basis and was used as Mohammadi & 
Callaghan suggest; this is displayed in Equation 116,31–33. As a measure of intra-axonal volume, the 
fiber density cross section was used as the intra-axonal volume fraction (AVF), and as a metric of 
myelin density, the T1w/T2w ratio was used as the myelin volume fraction (MVF)34. Both metrics 
represent the total sums of each respective compartment across the volume of the voxel and are a 
volume-based equivalent to the original formulation of g as the ratio of axon diameter (d) to fiber 
diameter (D).  
 
 
 (1) 
 
 

Aggregate conduction velocity was calculated based on the calculations of Rushton and 
Berman et al.; reiterating Rushton’s calculation that conduction velocity (θ) is proportional to the 
length of each fiber segment (l), and that this is roughly proportional to D, which in turn can be 
defined as the ratio between d and the g-ratio15,35. A value proportional to conduction velocity can 
be calculated using axon diameter and the g-ratio as in equation 235: 
 
 
(2) 
 
 
 All imaging metrics, 3T-CSD compartments, T1w/T2w ratio, aggregate g-ratio, and 
aggregate conduction velocity were averaged across each of 214 ROIs taken from the JHU-ICBM 
WM atlas (48 ROIs) and the Destrieux Cortical Atlas (164 ROIs)27,28. Additionally, two composite 
ROIs were included, one of all 48 JHU ROIs and one of 150 neocortical regions from the Destrieux 
Atlas. 
 
2.4.  Initial analysis 
2.4.1. Data preprocessing 
All conduction velocity and gene expression predictors were included in an initial traditional 
model for a total of 245 predictors. Participants were removed from the sample if missing either 
modality. The data was randomly split into training and testing sets, stratified by diagnostic cohort, 
at a 75-25 ratio. For feature preprocessing, all numeric predictors were normalized; the two 
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modalities do not occur on the same scale, so in this way we ensured equitable contributions from 
each in the analysis. 
 
2.4.2. Principal component analysis 
PCA was performed to reduce the dimensionality of the data. 40 principal components (PCs) were 
determined to be the maximum number of PCs examined: this number is equal to approximately 
25% of the training data points (n=159), and 40 PCs account for approximately 85% of the 
cumulative explained variance.  
 
2.4.3. Logistic regression 
Logistic regression modeling for classification was employed to determine how well the PCs 
separate the two classes. Model complexity was managed by tuning the number of PCs. 10-fold 
cross-validation was employed to further validate the modeling procedure. The workflow 
examined a range between one and 40 PCs to identify the number of PCs that maximized the area 
under the receiver operating characteristic (AUROC) curve, a metric that balances true positive 
rate against false positive rate. The final model configuration was applied to the entire training 
data set with the optimal hyperparameters determined by the tuning process. The final model was 
deployed on the unseen testing dataset, evaluated using both AUROC and accuracy. The results of 
the training and testing sets for this analysis are displayed in Table 1. 
 
2.5.  Experimental analysis 
2.5.1. Data preprocessing 
For the second comparative analysis, the existing training data set was split by participant cohort 
such that all autistic participants comprised one data frame and all non-autistic participants 
comprised another data frame. All conduction velocity and gene expression predictors were 
included in each of these data frames (again a total of 245 predictors). All numeric predictors were 
normalized again for the same reasons outlined above. 
 
2.5.2. Principal component analyses 
Separate PCAs were performed on each of the cohort data frames to reduce the dimensionality of 
the cohort-specific data by exploring the underlying structures. The number of PCs retained were 
determined independently for each group. First, the number of PCs that account for 70% of the 
cumulative variance was identified. Then, the number of PCs with a corresponding eigenvalue 
greater than or equal to one was identified. If these numbers were not equal, the number of retained 
PCs was decided to be the midpoint between them (rounded down). The results of this process are 
displayed in scree plots in Figure 1. Consequently, 17 PCs were retained for the autistic cohort and 
14 PCs were retained for the non-autistic cohort.  
 
2.5.3. Feature selection 
Salient features for each group were extracted from the selected PCs systematically using the 
following procedure. First, the top 25% (75th percentile) of variable loadings (in terms of absolute 
value) were identified per selected component to focus on those that contributed most to the within-
class variance. Then, instances of each of the predictors present in the top 25% were aggregated 
to identify the unique predictors among and across these PCs, defined as those only appearing once 
across all selected PCs. This resulted in seven predictors for the autistic group and 29 for the non-
autistic group. Finally, four common predictors between the two classes were removed; the 
remaining 32 predictors were selected for modeling. A full accounting of these predictors is 
reported in Tables 2 and 3. 
 
2.5.4. Logistic regression 
Logistic regression modeling for classification was again employed to determine the effectiveness 
of this dimensionality reduction technique as compared to the traditional method. Predictors for 
this model included the 36 predictors selected from the procedure above. Model complexity was 
managed by tuning the number of PCs. 10-fold cross-validation was employed to further validate 
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the modeling procedure. The workflow examined a range between one and 36 PCs to identify the 
number of PCs that maximized the AUROC curve. The final model configuration was applied to 
the entire training data set with the optimal hyperparameters determined by the tuning process. 
The final model was deployed on the unseen testing dataset, evaluated using both AUROC and 
accuracy. The results of the training and testing sets for this analysis are displayed in Table 1. All 
machine learning analyses and plot visualizations were created using the R package TidyModels36. 
 
3. Results 
3.1.  Genetic analysis 
3.1.1. Sex-wise analysis of CNV densities in autistic participants 
CNVs were detected in 196 Manta-annotated VCF files from the New York Genome Institute. 
VCF files benchmarked against the reference genome were assessed for sex-wise differences in 
the pseudo-autosomal region using pairwise t-tests; the results were statistically significant (T-
statistic = -7.21; p < 0.001). 
 
3.1.2. Differential expression analysis 
Differential expression analysis in DESeq2 showed that 3,707 genes exhibited significant 
differences when sex and diagnosis are considered as interacting factors. Differentially expressed 
genes showed statistical significance (p < 0.01 after false discovery correction) within or near the 
pseudo-autosomal boundary and the heterochromatic regions of the Y chromosome. Among these, 
the homologously encoded zinc finger transcription factors ZFX and ZFY emerged as highly 
significant genes. After adjustment, ZFX and ZFY showed exceptionally low p-values. 
 
3.2.  Traditional analysis 
The results of the traditional modeling procedure were as follows. The 10-fold cross validation 
procedure for tuning the number of principal components showed that the best training AUROC 
was 0.693 at 12 PCs. The associated training accuracy was 61.267%. For the unseen testing dataset, 
the AUROC was 0.618, and the accuracy was 57.407%. These values are reported in Table 1; ROC 
curves are displayed in Figure 2. 
 
3.3.  Experimental analysis 
3.3.1. Scree plot description 
Scree plots were generated for each of the autistic and non-autistic cohort PCAs. Thresholds were 
determined based on the intersection of cumulative percent variance explained (greater than 70% 
were considered) as well as the principal components with eigenvalues greater than or equal to 
one; the average PC of these two metrics was used as the final threshold. These thresholds are 
shown in Figure 1; the former is indicated in smaller dashed red lines, the latter is indicated by 
longer dashed red lines, and the average of these two is also displayed as a solid red line. These 
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Fig. 1. Scree plots of the autistic and non-autistic cohort PCAs. Short-dashed lines indicate the number of PCs that 
account for 70% of the cumulative variance, long-dashed lines indicate the number of PCs with eigenvalues greater 
than or equal to one; the solid red lines indicate the average of these two values, rounded down. 
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values were as follows: greater than 70% cumulative variance was explained by 15 PCs in the 
autistic group and 11 PCs in the non-autistic group, eigenvalues greater than or equal to one 
included 20 PCs in the autistic group and 18 PCs in the non-autistic group, and the final threshold 
for the autistic group was 17 PCs and 14 PCs for the non-autistic group. 
 
3.3.2. Model evaluation 
Table 1 contains the logistic regression performance results from the two approaches. The training 
AUROC and accuracy values were comparable across both approaches, while the testing AUROC 
of 0.668 was greatly improved in the experimental approach, indicating more robust 
generalizability. Overall, the accuracy metrics were poor for both models, but an accuracy value 
of 59.259% for the experimental approach showed improvement over the traditional approach. 
Visualizations of the AUROC curves are available in Figure 2.  
 
Table 1.  Area under ROC curve and accuracy for the traditional model and experimental model. 

 Training Testing 
 AUROC Accuracy AUROC Accuracy 

Traditional 0.6931 61.2672% 0.6181 57.4074% 
Experimental 0.6935 60.2892% 0.6676 59.2593% 

 
 

 
3.3.3. Feature selection 
Tables 2 and 3 display the features selected by the experimental procedure, ordered by PC number 
and then loading value. After removing the predictors that appeared in PCA procedure for both the 
autistic and non-autistic group, the experimental analysis contained 36 predictors. These features 
were mostly loaded onto the first principal component for each group (25/40; 62.5%). The value 
reported in the final column of these tables represents the loading value of a given predictor on the 
PC where higher absolute values represent a stronger relationship between predictor and PC. 
Directionality is also relevant here: positive values indicate a positive relationship between 
predictor and PC, whereas negative values indicate the opposite. These values only apply within 
the context of a given PC and should not be compared across PCs. The relevant cortical, 
subcortical, and white matter regions can be found highlighted in Figure 3. 
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Fig. 2.  ROC curves for the traditional logistic regression results (left) and experimental results (right). 
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Table 2.  Top predictors from the autistic cohort PCA, sorted by component number, then loading 
value within each component.  
Predictor Region type Hemisphere Component Value 
Frontal superior gyrus Gray matter Right PC1 0.0990 
Lateral fissure (posterior 
part) 

Gray matter Right PC1 0.0890 

Lateral superior temporal 
gyrus 

Gray matter Right PC2 0.1511 

Frontal inferior sulcus Gray matter Right PC9 -0.1263 
Dorsal posterior cingulate 
gyrus 

Gray matter Left PC9 -0.1068 

     
Table 3.  Top predictors from the non-autistic cohort PCA, sorted by component number, then 
loading value with each component.  
Predictor Region Type Hemisphere Component  Value 
Superior corona radiata White matter Right PC1 0.0898 
Body of corpus callosum White matter - PC1 0.0893 
Posterior corona radiata White matter Right PC1 0.0890 
Anterior corona radiata White matter Left PC1 0.0888 
Posterior limb of internal 
capsule 

White matter Left PC1 0.0886 

Posterior thalamic radiation White matter Right PC1 0.0881 
Superior circular sulcus of 
the insula 

Gray matter Left PC1 0.0877 

Posterior corona radiata White matter Left PC1 0.0875 
Mid./posterior cingulate 
gyrus/sulcus 

Gray matter Right PC1 0.0864 

External capsule White matter Right PC1 0.0859 
Genu of corpus callosum White matter - PC1 0.0850 
Posterior thalamic radiation White matter Left PC1 0.0847 
Caudate Subcortical Left PC1 0.0845 
Sub-parietal sulcus Gray matter Left PC1 0.0833 
Precuneus gyrus Gray matter Left PC1 0.0814 
Superior temporal sulcus Gray matter Left PC2 -0.0744 
Superior temporal gyrus 
(transverse) 

Gray matter Left PC5 -0.0755 

Anterior circular sulcus of 
the insula 

Gray matter Right PC5 0.0676 

Inferior frontal sulcus Gray matter Left PC7 0.1026 
H-shaped orbital sulcus Gray matter Left PC7 0.0806 
Superior occipital gyrus Gray matter Right PC8 0.0814 
Hippocampus Subcortical Left PC9 -0.1093 
Superior temporal gyrus 
(transverse) 

Gray matter Right PC10 0.1104 

Tapetum White matter Left PC11 -0.1104 
Inferior parietal gyrus 
(supramarginal) 

Gray matter Left PC12 -0.1337 

Paracentral lobule gyrus and 
sulcus 

Gray matter Right PC13 0.1560 

Transverse temporal sulcus Gray matter Left PC14 -0.1019 
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4. Discussion 
The results of the experimental dimensionality reduction procedure are promising. In the context 
of classification for autistic vs. non-autistic individuals using neuroimaging and genetic features, 
the AUROC performance in this study is acceptable, especially using traditional machine learning 
frameworks (and not deep learning, which brings its own set of challenges)37–40. PCA is effective 
in this context because it better addresses the issue of overfitting, as evidenced by the improved 
testing AUROC metric. By capturing within-class variability, the modeling effort performs better 
on unseen testing data and generalizes more readily to other datasets. Despite failing to achieve 
performance that could provide actionable clinical insights and true inference of the underlying 
mechanisms, the feature selection methodology succeeded for multiple reasons.  

First, the marked improvement in testing AUROC performance (over the traditional 
approach) demonstrates that the extracted features capture many of the relevant aspects that 
differentiate the classes. AUROC is better suited to many classification tasks, including this one, 
since it provides a balance between true positive rate and false positive rate, whereas accuracy is 
a simpler metric that measures the ratio of correct predictions to total predictions. AUROC is also 
the preferred metric for datasets with imbalanced classes; while the classes in this study are not 
exceptionally imbalanced, AUROC is equipped to handle even slight imbalances and, as such, is 
the preferred metric here. AUROC improvements in the experimental analysis demonstrate this 
methodology’s internal validity and robustness to variations in unseen testing data.  

Additionally, many of the extracted features represent notable regions of cortical, 
subcortical, and white matter connectivity in ASD research. ASD is characterized by abnormalities 
in brain structure, function, and connectivity, and many of the established areas of study are present 
in the extracted features12,41,42. The ability of the proposed procedure to pinpoint differences in 
relevant brain regions validates the methodology and necessitates further exploration both within 
and without the context of ASD research. 

This analysis does not provide much evidence for the role of the pseudo-autosomal region 
on autism development, as none of the examined genetic predictors outperformed the 
microstructural predictors in terms of principal component loading. The low N of the sample is 

A. B. C. 

Fig. 3.  (A) Cortical regions extracted from the PCA procedure. Top left: medial view of the left 
hemisphere; top right: lateral view of the left hemisphere; bottom left: lateral view of the right hemisphere; 
bottom right: medial view of right hemisphere. (B) Subcortical regions extracted from the PCA procedure. 
(C) White matter tracts extracted from the PCA procedure. Purple regions were found to be characteristic 
of the autistic group; green regions were found to be characteristic of the non-autistic group; red regions 
represent the overlapping regions between both the autistic and non-autistic group. 
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likely a contributing factor to this phenomenon, though it is also possible that the pseudo-
autosomal region is not nearly as contributory to the etiology of ASD as microstructural metrics. 
Indeed, when the two modalities were examined separately, the genetic data performed poorly as 
predictors for classification within the same framework. 
 
4.1.  Feature selection 
4.1.1. Cortical features 
Of the many cortical gray matter regions extracted by this methodology, two have been implicated 
in ASD research previously: the superior occipital gyrus and the frontal superior gyrus43,44. The 
frontal superior gyrus in particular is known to play a role in executive functioning, a domain 
previously identified as having deficits for autistic individuals relative to non-autistic 
individuals45,46. Other extracted cortical regions not directly implicated in ASD research do pertain 
to neurological processes relevant to areas previously identified as lacking in ASD individuals, 
including social cognition (anterior circular sulcus of the insula, inferior parietal gyrus), language 
processing (inferior frontal sulcus, superior temporal sulcus) and executive function (inferior 
frontal sulcus)47–50. It should be noted that certain cortical regions previously identified as 
differentially active in autistic and non-autistic individuals were not highlighted by this method, 
including the dorsal medial frontal cortex, anterior cingulate cortex, and orbitofrontal cortex51–53. 
 
4.1.2. Subcortical features 
Subcortical features extracted using this method included the hippocampus and caudate nucleus. 
The hippocampus is known to be heavily involved in memory-related functions, and specific to 
ASD, both encoding and retrieval processes of episodic memory have been implicated as altered 
in ASD54. The caudate nucleus has been shown to have decreased connectivity in autistic 
individuals and is implicated in restricted and repetitive behavior development and increased 
autistic symptom severity as well55–57. 
 
4.1.3. White matter features 
Many of the white matter features extracted in this study are also characteristic of the differences 
observed between autistic and non-autistic individuals. Corpus callosum tracts are most relevant 
here (body and genu of corpus callosum, superior/anterior/posterior corona radiata), but the 
tapetum has also been found to be under-connected in ASD relative to non-autistic individuals58,59. 
 
4.2.  Alternative approaches 
4.2.1. PCA procedure on different data frames 
This experimental technique was deployed on this dataset in other ways to assess its effectiveness 
in different contexts. PCA was performed on each modality without first separating classes to 
attempt to capture modality-specific variability. Many of the extracted microstructure predictors 
remained the same as the focus of this study; however, this method also incorporated several 
genetic predictors as well. The resulting logistic regression yielded poor classification 
performance, likely due to an inability to extract the most salient features for each class. 
 Further, separate PCAs were performed on the four groups defined by the two different 
modalities and the two classes (autistic genetic, autistic microstructure, non-autistic genetic, non-
autistic microstructure). Again, the microstructure metrics were comparable to those extracted in 
the main analysis of the study, and again this method allowed for more genetic predictors to 
contribute to the machine learning framework. This methodology performed even worse than 
before, however. The results of both attempts further cements the conclusion that the pseudo-
autosomal region does not contribute to differences between autistic and non-autistic participants 
in this study and it is possible the genetic basis of ASD may lie elsewhere on the genome.  
 
4.2.2. Other machine learning models 
Two other types of machine learning models were employed for the classification part of this 
analysis: random forest (RF) and quadratic discriminant analysis (QDA). These models are 
appropriate for data that is not expected to display a linear decision boundary and as such are more 
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flexible. Logistic regression does expect the data to be linearly separable, and while that may 
appear to be a significant limitation of the modeling efforts of this study, RF and QDA performed 
far worse than logistic regression in both the traditional and experimental dimensionality reduction 
frameworks. One explanation for this could be that the data is not complete enough to allow for 
flexible models to generalize well. Microstructure and genetics are only two pieces of a larger 
puzzle that can include many other modalities like functional imaging, EEG, and behavioral data. 
Relatedly, while the extracted features comprise the major group differences in this dataset, they 
only capture part of the global within-group variability and therefore further limit the 
generalizability of the results; a phenomenon exacerbated by flexible machine learning methods.  
 
4.3.  Future directions 
In the pursuit of assessing putative neurogenetic markers of ASD through the integration of 
neuroimaging, genomic, and phenotypic data, built upon the approach described here, several 
critical future directions emerge. One primary consideration is the utilization of data imputation to 
increase the sample size. While genetic data imputation may not be valid due to the potential 
introduction of biases and inaccuracies, it can be more appropriately applied to other metrics such 
as conduction velocity, pending further exploration and validation of the technique in this context. 

In terms of machine learning applications, while classification remains a viable approach, 
regression-based predictive modeling presents an avenue with the potential for more nuanced and 
informative results. Incorporating behavioral phenotyping outcome surveys, including measures 
of language, executive function, and social interaction, could provide rich data for these models, 
enhancing their predictive power and relevance. 

An interesting observation from the experimental model is the failure of the gene 
expression features to contribute significantly following the selection procedure. When modalities 
were analyzed independently absent the experimental procedure, the resulting classification 
performance was suboptimal compared to traditional methods. This issue was further compounded 
when PCA was applied separately to four classes based on diagnostic groups and modalities (e.g., 
gene expression-autistic, gene expression-non-autistic, etc.). This suggests that the variance 
captured through the main PCA feature selection approach is sufficient for robust case 
classification, outperforming more granular feature selection strategies. Some recent studies have 
attempted to balance modality-specific contributions; these procedures tend to utilize 
regularization and differential weighting to achieve modality balance and could provide a more 
nuanced representation of the influence of each modality60,61. 

The feature selection approach could be applicable in individual nuances in autistic 
individuals; the initial provenance of salient features provides a starting point from which 
individual similarities and differences can be assessed. Additionally, sex-specific disparities in 
ASD are another critical area that warrants further examination and could be addressed by an 
exacting feature selection approach. Conducting separate PCAs for different sexes within the 
autistic group may reveal unique and actionable insights, potentially improving the performance 
of downstream machine learning models. 

Moreover, several advanced analytical methods offer promising future directions, in particular 
deep learning. Employing deep learning techniques for data fusion to integrate multimodal data 
could capture complex relationships between neuroimaging, genomic, and phenotypic data. This 
is an emerging area with promising results but no unified optimal strategy as of yet62,63. 

In summary, future research in the integration of neuroimaging, genomic, and phenotypic data 
in ASD will need to explore advanced data imputation techniques, leverage regression-based 
predictive modeling, and consider sex-specific analyses. Employing deep learning, sophisticated 
weighting and thresholding strategies, and advanced dimensionality reduction methods could 
significantly enhance the understanding and predictive power of these complex datasets. 
 
4.4.  Conclusions 
The results of the experimental dimensionality reduction procedure for classifying autistic versus 
non-autistic individuals using neuroimaging and genetic features are promising. The AUROC 
performance achieved in this study is acceptable, especially within traditional machine learning 
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frameworks. PCA effectively addresses overfitting, as indicated by the improved testing AUROC 
metric. By capturing within-class variability, the model performs better on unseen testing data and 
generalizes more readily to other datasets. 

Firstly, the marked improvement in testing AUROC performance over traditional 
approaches indicates that the extracted features capture many relevant aspects differentiating the 
classes. AUROC is a balanced metric that accounts for both true positive and false positive rates, 
making it particularly suitable for datasets with even slight class imbalances. The improvements 
in AUROC demonstrate the methodology’s internal validity and robustness to variations in unseen 
testing data. 

Many of the extracted features represent notable regions of cortical, subcortical, and white 
matter connectivity, which are well-documented in ASD research. Interestingly, the analysis did 
not provide substantial evidence for the role of the pseudo-autosomal region in autism 
development. None of the examined genetic predictors outperformed the microstructural 
predictors in terms of principal component loading. This may be due to the low sample size, but it 
also raises the possibility that the pseudo-autosomal region is not as contributory to the etiology 
of ASD as microstructural metrics. When examined separately, genetic data performed poorly as 
predictors for classification within the same framework, further supporting this conclusion. 

Cortical features extracted from the analysis highlight critical regions involved in ASD, 
such as areas related to social cognition, language processing, and executive function. These 
regions are consistent with the existing literature on ASD, reinforcing their importance in 
understanding the disorder's neurobiological underpinnings.  Likewise, subcortical features 
identified include regions involved in emotion regulation, reward processing, and motor functions. 
Abnormalities in these areas are frequently reported in ASD studies, underscoring their relevance 
to the disorder's phenotype and supporting the validity of the feature selection process. Finally, 
white matter features point to connectivity issues between different brain regions, which are a 
hallmark of ASD. Disruptions in white matter integrity can affect communication between cortical 
and subcortical regions, contributing to the diverse symptomatology of ASD. 

Applying PCA to each modality without separating classes aimed to capture modality-
specific variability. While some microstructure predictors remained consistent, this approach also 
included several genetic predictors. However, the resulting logistic regression yielded poorer than 
expected classification performance, likely due to an inability to extract the most salient features 
for each class. Separate PCAs for the four groups (autistic genetic, autistic microstructure, non-
autistic genetic, non-autistic microstructure) also performed poorly, reaffirming that the pseudo-
autosomal region may not significantly contribute to ASD classification. 

Exploring more flexible machine learning methods, such as quadratic discriminant analysis 
and tree-based models, did not improve performance over logistic regression. This suggests that 
the proposed feature selection method is most effective with less flexible machine learning models, 
highlighting the need for careful selection of analytical techniques based on the data and research 
goals.  The identification of critical cortical, subcortical, and white matter features aligns with 
existing ASD research, reinforcing their relevance in understanding the disorder's neurobiological 
underpinnings. While the role of genetic predictors remains less clear, these findings highlight the 
need for meticulous selection of analytical techniques tailored to the specific characteristics of the 
data. Such comprehensive and data-driven strategies are vital for understanding the nuances of 
ASD and advancing for the field toward more effective and personalized diagnostics and 
interventions.   
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