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Genome-wide association studies (GWAS) are an important tool for the study of complex disease 
genetics. Decisions regarding the quality control (QC) procedures employed as part of a GWAS can 
have important implications on the results and their biological interpretation. Many GWAS have 
been conducted predominantly in cohorts of European ancestry, but many initiatives aim to increase 
the representation of diverse ancestries in genetic studies. The question of how these data should be 
combined and the consequences that genetic variation across ancestry groups might have on GWAS 
results warrants further investigation. In this study, we focus on several commonly used methods for 
combining genetic data across diverse ancestry groups and the impact these decisions have on the 
outcome of GWAS summary statistics. We ran GWAS on two binary phenotypes using ancestry-
specific, multi-ancestry mega-analysis, and meta-analysis approaches. We found that while multi-
ancestry mega-analysis and meta-analysis approaches can aid in identifying signals shared across 
ancestries, they can diminish the signal of ancestry-specific associations and modify their effect sizes. 
These results demonstrate the potential impact on downstream post-GWAS analyses and follow-up 
studies. Decisions regarding how the genetic data are combined has the potential to mask important 
findings that might serve individuals of ancestries that have been historically underrepresented in 
genetic studies. New methods that consider ancestry-specific variants in conjunction with the shared 
variants need to be developed. 
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1. Introduction

1.1.  Population Structure in Genome-Wide Association Studies 

Genome-wide association studies (GWAS) are a powerful tool for discovering genetic associations 
with traits of interest1. Since its introduction in 2005, the use of GWAS has become a standard 
method in the field of statistical genetics, offering insight into the contribution of alleles with small 
effect sizes for complex traits2. As DNA sequencing becomes more affordable, and large healthcare 
systems, biobanks, and consortia continue to link electronic health record (EHR) information 
containing disease phenotypes to patients’ genetic information, larger sample sizes for complex 
disease show continued promise for the application of GWAS. At the time of writing this 
manuscript, the GWAS catalog contained summary statistics for over 5,000 phenotypes3.  
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Beyond the wide application of GWAS in the field of genetics, considerable work has been 
done to identify the impact of quality control (QC) procedures and best practices for GWAS4,5. 
Technical decisions such as allele frequency threshold, variant quality thresholds, data missingness, 
and population structure are all known to impact GWAS outcomes5. Despite the considerable work 
that has been done to offer guidance on GWAS QC and study design, many decisions are made on 
a case-by-case basis and the approach taken can vary based on the lab and the guidance 
referenced1,4,5. We aim to focus specifically on the impact that different strategies for combining 
genetic data from two genetically inferred ancestry groups have on GWAS summary statistics. 

An individual’s genetic ancestry can be inferred from their DNA, which contains 
information about the genetic signatures resulting from ancestral migrations, mutations, 
recombination, genetic drift, and natural selection4,6,7. Ancestry-specific evolutionary and 
demographic histories can lead to linkage disequilibrium (LD) and allele frequencies that differ 
across populations and result in spurious associations due to the confounding effects of ancestry in 
GWAS8,9. Some standard methods to control for population structure within a GWAS study cohort 
are the use of a mixed model combined with a genetic relationship matrix (GRM), principal 
component analysis (PCA), and the subsequent inclusion of a small number of principal components 
(PCs) as covariates in the GWAS model10,11. However, even with the inclusion of PCs, population 
structure may not be entirely accounted for, leading to persistent spurious associations12. Additional 
methods of inferring genetic ancestry such as K-means clustering and quadratic discriminant 
analysis (QDA) of PCA data or the application of tools such as ADMIXTURE can provide greater 
resolution for decisions regarding the inference of genetic ancestry of individuals and prove useful 
for QC decisions for GWAS in admixed and multi-ancestry cohorts13,14.  

As the volume of genetic data combined with rich EHR phenotype data from diverse 
populations continues to increase, GWAS will continue to be an important tool. Subsequently, the 
choice between a study focused on ancestry-specific and/or multi-ancestry GWAS approaches will 
have important implications on the results and their interpretations, especially when GWAS 
summary statistics are used for downstream analyses such as transcriptome-wide association studies 
(TWAS), proteome-wide association studies (PWAS), or polygenic scores (PGS)4,15,16. Ancestry-
specific GWAS may provide insight into genetic associations within specific ancestral 
groups, allowing for the detection of associations that may be unique or have varying effect sizes 
across different populations. However, these approaches can be limited due to smaller sample sizes 
in underrepresented global populations. Multi-ancestry mega-analysis GWAS or meta-analysis 
approaches can leverage larger sample sizes and provide insight into genetic associations shared 
across ancestrally diverse populations4,15,17. However, both approaches present unique challenges 
and opportunities that must be carefully considered in the experimental design and interpretation of 
results. 

1.2. Inclusion of Diverse Ancestries in Genetic Studies 

Genetic studies are predominantly focused on European ancestry, with most GWAS conducted in 
these populations, leading to insights that are not always generalizable to non-European groups and 
exacerbate health disparities3,17–22. The lack of diversity in genetic research limits our understanding 
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of genetic variation in underrepresented ancestries and its relationship with complex traits19,21. 
Initiatives like the All of Us Research Program, the Human Heredity and Health in Africa 
(H3Africa) Initiative, the Million Veteran Program (MVP), and the NHLBI Trans-Omics for 
Precision Medicine program (TOPMed) aim to address this by recruiting diverse populations and 
creating more representative datasets for genetic research22–25. However, integrating these diverse 
datasets into GWAS is complicated by unequal sample sizes and differences in allele frequency and 
LD patterns between populations, which highlight the need for robust and specialized 
methodologies to ensure accurate and equitable interpretation of genetic associations. 

Incorporating diverse ancestries in GWAS offers opportunities to discover associations 
absent in European-focused studies, providing valuable insight for underrepresented 
populations16,26. It can also enhance fine mapping by leveraging genomic diversity across 
ancestries17. Multi-ancestry mega-analysis and ancestry-specific GWAS with meta-analysis offer 
solutions but are limited by differences in study design, sample sizes, and the model specified for 
the meta-analysis. Decisions between fixed effect or random effect meta-analysis will have an 
impact on the combined results and require assumptions regarding the heterogeneity of associations 
between populations4,27,28. 

1.3. Shared and Ancestry-Specific Associations 

Most human genetic variation can be observed within all ancestry groups and many genetic 
associations with disease are shared across human populations29. However, for a small portion of 
the genome, associations can vary across different ancestral populations, with distinct loci 
contributing to the same trait in populations with distinct genetic ancestry. This is evident in 
Solomon Islanders, where a mutation in the TYRP1 gene is associated with blond hair30. This 
mutation is absent outside of Oceania, and thus cannot explain blond hair in individuals of European 
ancestry30. Similarly, variants such as the G1 and G2 variants in APOL1 have been shown to account 
for a substantial degree of risk for chronic kidney disease (CKD) in individuals of African ancestry 
while being very rare or absent in other ancestry groups31–33. These examples underscore the 
importance of conducting ancestry-specific GWAS to uncover genetic associations that may be 
masked, diluted, or even missing in multi-ancestry analyses. 

Many GWAS of complex traits have identified associations that are shared across ancestries 
in which a shared variant demonstrates a similar effect size for a trait across multiple 
populations26. For example, variants in the FTO gene have been consistently associated with 
increased body mass index across diverse populations34. Similarly, variants in the TCF7L2 gene are 
strongly associated with increased risk of type 2 diabetes (T2D) across multiple populations35–44.  

The basis of phenotypic variation and the influence of genetic ancestry is complex. Some 
diseases exhibit ancestry-specific genetic associations, while others share common genetic 
associations across populations. This complexity is further compounded by the continuous nature 
of admixture in natural populations. Understanding the genetic factors that influence complex traits 
across different populations is crucial for developing personalized medicine approaches tailored to 
the unique genetic makeup of diverse individuals. The present study aims to contribute to this 
understanding by investigating the genetic associations with chronic kidney disease (CKD) and type 
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2 diabetes mellitus (T2D) across European (EUR) and African (AFR) ancestries, utilizing both 
ancestry-specific and multi-ancestry GWAS approaches to comprehensively assess the impact of 
genetic variation on these traits (Figure 1).  

2. Methods

Figure 1: Study Overview: For each binary phenotype, four GWAS were run: EUR-specific, AFR-
specific, EUR and AFR combined (multi-ancestry mega-analysis), and meta-analysis of EUR- and AFR-

specific GWAS. 

2.1.  Data and Study Participants 

The Penn Medicine BioBank (PMBB) is an electronic health record (EHR)-linked research program 
at the University of Pennsylvania, Perelman School of Medicine45. PMBB participants provided 
consent for research, including blood sample collection, generation of genetic data, and EHR 
access45. Individuals with imputed genotype, demographic, and EHR data were included in this 
study. PMBB v2.0 imputed data and v2.3 phenotype data were utilized45. 

2.2.  PMBB Centralized Genotyping, Imputation, & Quality Control 

DNA was extracted from blood samples, which were genotyped by the Regeneron Genomics Center 
with an Illumina Global Sequencing Array v2.0 (GSAv2) containing 654,027 fixed markers45. 
Variant and sample-level quality control was conducted prior to genotype imputation using PLINK 
v1.945,46. Variants with genotype call rates < 95%, individuals with discordance between reported 
sex and genetic sex, and individuals with sample call rates < 90% were dropped45. Subsequently, 
autosomes were imputed using TOPMed version R2 genome build 38 reference panel25,45,47. After 
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imputation, PLINK v2.0 was used for additional variant and sample-level quality control45,46. 
Variants with genotype call rates < 99%, minor allele frequency (MAF) < 1%, Hardy-Weinberg 
Equilibrium (HWE) exact test p-value < 1e-8 or imputation R2 scores < 0.3 were excluded45. 
Palindromic SNPs, insertions and deletions, and multiallelic variants were also excluded. In 
addition, individuals with sample call rates < 99% were dropped45. 

2.3.  Principal Component Analysis, Genetically Inferred Ancestry, and Ancestry-Specific 
Quality Control 

2.3.1 Quality Control Prior to Principal Components Analysis 

Prior to PCA, quality control was conducted in all eligible samples using PLINK v1.9 and v2.046. 
Individuals with sample call rates < 95% were dropped46. In addition, variants with genotype call 
rates < 95%, imputation R2 scores < 0.80, MAF < 5%, or HWE exact test p-value < 1e-10 were 
excluded46. Subsequently, only variants in the intersection between the PMBB and 1,000 Genomes 
genetic datasets were included6.  

2.3.2 Principal Component Analysis and Genetically Inferred Ancestry 

Principal component analysis (PCA) was conducted with eigensoft smartPCA on the LD pruned 
autosomal data48. PCs in PMBB were projected onto 1,000 Genomes6,48. Using the top two PCs, 
genetically inferred ancestry was computed using QDA with 1,000 Genomes super-populations as 
a reference6,14. Individuals that had >80% probability of similarity to clusters representing the 
1,000 Genomes super-population of EUR of AFR were retained for inclusion in GWAS. 

2.3.3 Analysis-Specific Quality Control and Principal Components Analysis 

After computing genetically inferred ancestry, analysis-specific quality control was completed in 
EUR, AFR and MEGA (union of EUR and AFR) cohorts with PLINK v1.9 and v2.046. Individuals 
with sample call rates < 95% and variants with genotype call rates < 95%, MAF < 95%, or 
imputation R2 score < 0.3 were excluded. Only biallelic and non-palindromic SNPs were retained. 
PCA was conducted within each cohort independently following QC using eigensoft smartPCA48. 
Principal components from the cohort-specific PCA were used as covariates in the GWAS. 

2.4.  Genome Wide Association Study 

GWAS were conducted using SAIGE11. We conducted GWAS utilizing three stratification methods: 
GWAS stratified to EUR individuals only (EUR-specific), GWAS stratified to AFR individuals only 
(AFR-specific), and GWAS with both EUR and AFR individuals (MEGA). We tested associations 
with two phenotypes: CKD and T2D. To phenotype individuals, ICD-9 and ICD-10 codes were 
mapped to PhecodeX if they had at least two separate instances of an ICD code49. The Phecodes 
used were as follows: CKD = GU_582.2, T2D = EM_202.249. Eligible controls had zero instances 
of an ICD code used in case definition. To mitigate the effects of sample size, we randomly down 
sampled while matching case control ratio to ensure the same number of cases and controls across 
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EUR and AFR individuals for each phenotype. The multi-ancestry mega-analysis GWAS contained 
a balanced number of EUR and AFR individuals, and the same total sample size as ancestry-specific 
GWAS. Age at data release, sex assigned at birth, and PC1-7 were used as covariates. We selected 
the top seven PCs because this explained 79-98% of variance between individuals in the three 
cohorts (Supplementary Figure 1, Supplementary Figure 2, Supplementary Figure 3). 

2.5. Meta-Analysis 

Summary statistics from the AFR and EUR ancestry-specific GWAS analyses were meta-analyzed 
using METASOFT27,28. To compare the impact of model specification on the outcome, the meta-
analyses were conducted using a fixed-effect (FE), random-effect (RE), modified random-effect 
(RE2_INITIAL), and modified random-effect with adjustment for mean effect and heterozygosity 
(RE2_CORRECTED)27,28. Meta-analyses were conducted on the intersection of variants included 
in the AFR and EUR-specific GWAS. All summary statistics from independent GWAS were 
adjusted using genomic control following the instructions in the METASOFT publication27,28. To 
ensure consistent sample sizes between analyses, the EUR and AFR groups were randomly down 
sampled prior to GWAS while maintaining balanced case control ratio such that the meta-analyses 
contained the same total sample size as the other GWAS. GWAS and meta-analysis results were 
visualized using qqman and SynthesisView50,51. Variants that had a p-value < 5e-8 were considered 
significant.  

2.6. Analysis of Effect Size Variability 

To assess changes in effect size for variants included in all analyses, we identified whether a 
variant’s effect size changed direction in at least one analysis. We compared effect sizes in the 
following analyses: all analyses, ancestry-specific compared to multi-ancestry approaches, MEGA 
analysis compared to meta-analysis approaches, and fixed effect meta-analysis compared to random 
effect meta-analysis. We identified the percentage of variants that changed direction of effect in 
each comparison group, both genome-wide and among the variants with the most significant 
associations, which were visualized in SynthesisView plots51. 

3. Results

The PMBB had 43,589 individuals with genetic data that passed initial QC and were analyzed using 
QDA to infer genetic ancestry. Using our approach, we identified 10,631 individuals that clustered 
with the AFR super population and 17,495 individuals that clustered with the EUR super population 
from the 1,000 Genomes reference panel. Figure 2 shows the individuals from PMBB in the PCA 
projection of the 1,000 Genomes. Following analysis-specific QC of these individuals, there were 
10,631 individuals and 6,792,866 variants in the AFR analyses, 17,495 individuals and 4,910,840 
variants in the EUR analyses, and 28,126 individuals and 5,652,287 variants in the MEGA analyses. 
Of these variants, 4,184,455 were shared between AFR and EUR cohorts and could be included in 

256



meta-analyses and 3,334,796 
were only found in a single 
ancestry after QC. Table 1 
shows the final sample sizes. 

The AFR-specific 
GWAS of CKD replicated a 
known signal in the APOL1 
gene (rs73885319) on 
chromosome 22 (p-value = 
7.92e-11) (Figure 3, Figure 
4)31. This signal was not
detected in the EUR-specific 
analysis as the MAF of this 
variant was 0.00869% and 
therefore did not pass QC. This 
signal was detected in the 
MEGA analysis with a p-value 
of 1.43e-7, which is below the 
genome-wide significance 
threshold. Due to the 
monomorphic nature of this 
allele in the EUR population, the variant was not included in any of the meta-analyses. The meta-
analyses identified additional associations in the ANXA5 gene on chromosome 4 and downstream 
of LOC124900539 on chromosome 2. 

The T2D GWAS replicated four known signals in the TCF7L2 gene on chromosome 10 
(rs35011184, rs7901695, rs7903146, rs34872471), and one upstream of the CRYBA2 
gene/downstream of the MIR375 gene on chromosome 2 (rs113414093) (Figure 3, Figure 5)35,36,38–

44,44,52. rs7903146 reached genome-wide significance in the AFR-specific GWAS (p-value = 6.59e- 
10) and the EUR-specific GWAS (p-value = 5.23e-9). This signal was detected in the MEGA and
meta-analyses but was below genome-wide significance. rs34872471 was genome-wide significant
in the EUR-specific GWAS (p-value = 5.00e-9) but not in the other analyses. rs35011184 and
rs7901695 were detected in all GWAS iterations but were not genome-wide significant, with the
EUR-specific GWAS having the lowest p-values (rs35011184 p-value = 4.05e-8, rs7901695 p-
value = 1.19e-6). rs113414093 was only detected in the EUR-specific GWAS and was not genome-
wide significant (p-value = 9.97e-7). This variant was not present in the other analyses as the MAF
was 0.909% in the AFR-specific cohort and 3.70% in the MEGA cohort. The meta-analysis
identified additional associations in the PTPRG gene on chromosome 3, and upstream of
LOC105374348/downstream of FAM53A on chromosome 4.

 In the GWAS of CKD, majority of the variants with the most significant p-values changed 
direction of effect in at least one analysis (Table 2). There was variability in the T2D analyses, but 
the trend was not as extreme (Table 2).  

Phenotype Case  Control Total Sample Size

T2D 3,184 6,448 9,632

CKD 2,659 7,543 10,202 

Figure 2: PCA of PMBB samples (right) projected onto the 1,000 
Genomes reference panel (left). Colors indicate clustering with 

1,000 Genomes super-population (AFR, AMR, EAS, EUR, SAS). 

Table 1: Final Sample Sizes for both Ancestry groups.
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Figure 3: Significance Levels and Effect Sizes for Chronic Kidney Disease (left) and Type 2 
Diabetes (right). The most significant variants for each phenotype are displayed. Variants 
highlighted in red are known signals. Variants are annotated with gene names (left axis). 

CKD Synthesis View T2D Synthesis View 
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Figure 4: Chronic Kidney Disease Stacked Manhattan Plot. Top plot is AFR-specific 
GWAS, followed by MEGA GWAS, EUR-specific GWAS, and meta-analysis using modified 

random effect framework (RE2_corrected). 

Additionally, direction of effect flipped less when comparing multi-ancestry methods (Table 2). 
When investigating variants genome-wide, there is a decrease in variability in CKD, but an increase 
in variability in T2D (Supplementary Table 1). Additionally, 84-98% of the most significant 
variants’ effect sizes in multi-ancestry analyses had a value within the range of ancestry-specific 
effect sizes (Supplementary Table 2). This trend was less extreme in variants genome-wide, as 

Phenotype All 
Analyses 

AFR vs. 
Multi-

Ancestry 
Analyses 

EUR vs. 
Multi-

Ancestry 
Analyses 

MEGA 
vs. Meta 
Analyses 

Fixed Effect 
vs. Random 
Effect Meta 

Analyses 

Percentage of 
CKD Variants 86.36% 80.30% 56.06% 50% 7.58% 

Percentage of 
T2D Variants 54.05% 47.30% 18.92% 12.16% 9.46% 

Table 2: Proportion of Top Variants that Changed Direction of Effect. 75 variants were included in 
the T2D comparison, and 66 variants were included in the CKD comparison. 
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nearly 50% of effect sizes in multi-ancestry analyses were within the range of ancestry-specific 
effect sizes. 

Figure 5: Type 2 Diabetes Stacked Manhattan Plot. Top plot is AFR-specific GWAS, followed by 
MEGA GWAS, EUR-specific GWAS, and ancestry-balanced meta-analysis using modified random effect 

framework (RE2_corrected). 

4. Discussion

Our aim was to assess how different approaches of combining genetic data from individuals of 
diverse ancestries change the outcome of a GWAS. To test this, we conducted GWAS of CKD and 
T2D in individuals of African and European ancestry in the PMBB. We compared the differences 
in GWAS results through changes to the p-value and effect sizes for ancestry-specific analyses (AFR 
or EUR only), multi-ancestry mega-analysis (MEGA), and meta-analysis using fixed-effect (FE), 
random-effect (RE), and modified random-effect (RE2_INITIAL and RE2_CORRECTED). We 
hypothesized that while most genetic associations are shared across human populations, we would 
observe specific genetic associations that were statistically significant in only one ancestry and that 
the different multi-ancestry approaches would have inconsistent results for these variants. The 
results support our hypothesis as shown in Figures 3-5 and Table 2. 
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 In the GWAS of CKD, variants within the APOL1 gene were found to be significantly 
associated with CKD in the AFR-specific GWAS31. In the mega-analysis GWAS, these variants 
dropped below genome-wide significance, providing evidence that multi-ancestry mega-analysis 
can diminish ancestry-specific signals. We also note that the use of a meta-analysis tool such as 
METASOFT will exclude the association observed in the AFR-specific GWAS due to this variant 
not passing QC in the EUR cohort. Additional variants in the ANXA5 gene and downstream of 
LOC124900539 were significantly associated in the meta-analysis (RE2_CORRECTED) but may 
be spurious due to genomic inflation in this approach (Supplementary Figure 4).  

In the AFR and EUR-specific GWAS of T2D, a well-known variant (rs7903146) within the 
TCF7L2 gene was significantly associated with T2D35,43,44,52, while it dropped below genome-wide 
significance in all multi-ancestry analyses. The GWAS of T2D illustrates how the composition of a 
multi-ancestry approach can diminish the significance of ancestry-specific signals. However, we 
acknowledge the limitation that smaller number of cases per ancestry might have had in the multi-
ancestry approaches. Additional variants in the PTPRG gene and upstream of LOC105374348/ 
downstream of FAM53A were significantly associated in the meta-analysis (RE2_CORRECTED) 
but may be spurious due to genomic inflation in this approach (Supplementary Figure 5). 

Across both phenotypes, effect sizes flipped direction on many occasions, especially among 
variants with the lowest p-values (Table 2, Supplementary Table 1). This occurred more often 
when comparing ancestry-specific approaches to multi-ancestry approaches, rather than within 
multi-ancestry approaches, suggesting that observed ancestry-specific effect sizes can be altered 
when using multi-ancestry GWAS approaches. Additionally, effect size values in multi-ancestry 
results were commonly within the range of ancestry-specific effect size value for variants with the 
lowest p-values (Supplementary Table 2).  

Meta-analyses can be performed using different approaches, with fixed-effect (FE) and 
random-effect (RE) models being most common. Fixed-effect meta-analysis assumes a homogenous 
effect size between studies, meaning any variation in the observed effects is attributed solely to 
sampling error27. In contrast, random-effect meta-analysis assumed that the effect size varies 
between studies due to differences in population or study designs, allowing for more flexibility in 
capturing heterogeneity across datasets27. We employed the RE2 method developed by Han and 
Eskin (2011) because it improves statistical power by relaxing the conservative assumptions of the 
traditional random-effect model, enabling better detection of associations in the presence of 
heterogeneity27.  

Our study had several limitations. Our sample sizes were limited due to down sampling to 
match case and control numbers across ancestry groups, so many variants did not reach genome-
wide significance. This is of particular importance when considering changes to the signal in the 
TCF7L2 gene in T2D between approaches. Although a higher sample size would be ideal, down 
sampling was a crucial step to isolate the impact of ancestry on GWAS approaches rather than 
sample size and statistical power. Additionally, down sampled groups were not matched by age, sex 
or other clinical characteristics. In addition, the modified meta-analysis in the RE2_CORRECTED 
analyses produced slightly inflated results which often had the most significant associations and 
identified several signals for CKD and T2D that had not been reported in ClinVar or the GWAS 
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catalog3,53. Due to the low sample sizes in our study compared to previously reported GWAS of 
T2D and CKD that had not detected these associations, it is plausible these associations may be 
spurious. Our meta-analyses also only included variants that intersected between the ancestry-
specific GWAS, which led to the exclusion of several important ancestry-specific signals in the 
meta-analysis results. This can be overcome through the inclusion of more cohorts in a meta-analysis 
but highlights an important limitation of the meta-analysis approach under our framework for 
directly comparing two studies. Additionally, our method to assess variability in effect sizes was 
unable to fully quantify observed variability. The pattern of sample overlap between the GWAS 
approaches in our study violated assumptions of independence or matched dependence between 
studies. Quantification of this variability using a well calibrated statistical methodology is a logical 
next step to investigate the differences observed between approaches.  

In a typical GWAS, multi-ancestry mega-analysis, or meta-analysis approaches benefit from 
increased sample size. Our study, however, maintained consistent sample size across approaches to 
isolate ancestry’s impact. We found that multi-ancestry methods can diminish ancestry-specific 
signals, which can significantly impact downstream analyses like TWAS, PWAS, or PGS. This 
raises questions about the optimal approach for generating summary statistics, as results differ in 
meaningful ways based on initial GWAS method. Notably, many variants show striking changes in 
effect direction, both among those with significant p-values and genome-wide. These effect size 
flips are crucial, as they influence downstream analyses and biological/clinical interpretations. 
While many variants show consistent results across approaches, a notable subset are impacted by 
the choice of analysis method.  As we see with variants in APOL1, some of these variants showing 
variable results or which could not be fully assessed in all approaches are essential for understanding 
differences in disease risk between populations. Thus, new methods that consider the ancestry-
specific variants in conjunction with the multi-ancestry shared variants need to be developed. 
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