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Pharmacogenetics represents one of the most promising areas of precision medicine, with several 

guidelines for genetics-guided treatment ready for clinical use. Despite this, implementation has been 

slow, with few health systems incorporating the technology into their standard of care. One major 

barrier to uptake is the lack of education and awareness of pharmacogenetics among clinicians and 

patients. The introduction of large language models (LLMs) like GPT-4 has raised the possibility of 

medical chatbots that deliver timely information to clinicians, patients, and researchers with a simple 

interface. Although state-of-the-art LLMs have shown impressive performance at advanced tasks 

like medical licensing exams, in practice they still often provide false information, which is 

particularly hazardous in a clinical context. To quantify the extent of this issue, we developed a series 

of automated and expert-scored tests to evaluate the performance of chatbots in answering 

pharmacogenetics questions from the perspective of clinicians, patients, and researchers. We applied 

this benchmark to state-of-the-art LLMs and found that newer models like GPT-4o greatly 

outperform their predecessors, but still fall short of the standards required for clinical use. Our 

benchmark will be a valuable public resource for subsequent developments in this space as we work 

towards better clinical AI for pharmacogenetics. 

Keywords: Pharmacogenetics; Pharmacogenomics, Large Language Models, Artificial Intelligence, 

Clinical Informatics. 

1. Introduction

1.1.  Pharmacogenetics 

Pharmacogenetics (PGx) is the study of the role of genetics on an individual’s response to 

medication, with the aim of bringing tools to the clinic that can utilize a patient’s genetic information 

to improve medication safety and efficacy. Genetic variations that lead to changes in the activity or 

availability of drug metabolizing enzymes (DMEs), receptors, channels, and other proteins involved 

in pharmacodynamics and pharmacokinetics can contribute strongly to interindividual variability in 

drug response, resulting in an increased risk of adverse drug reactions (ADRs) and nonresponse 
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phenotypes.1 By identifying genetic markers that influence drug response, PGx enables healthcare 

providers to predict which patients are more likely to experience adverse reactions or treatment 

failure. This knowledge allows for more individually tailored medication regimens, optimizing 

therapeutic outcomes while minimizing the risk of side effects.2 The overarching goal of PGx is 

promoting personalized medicine, such that patients receive the right drug and the right dose, at the 

right time. In doing so, the field aims to improve patient outcomes, enhance medication safety, and 

reduce healthcare costs associated with ineffective or harmful treatments. 

Despite the availability of numerous well-characterized, clinically actionable PGx guidelines for 

widely used medications, the clinical implementation of PGx has been slow. Very few medical 

centers and clinics routinely use this technology. This gap is due to various factors such as a lack of 

awareness and education among healthcare providers, the constantly evolving body of PGx 

guidelines, and technical challenges in integrating PGx data into electronic health records (EHRs).3 

The cost of PGx testing and variable insurance coverage can also pose significant financial barriers, 

while regulatory and legal concerns may also impact the extent of implementation of PGx testing in 

hospital systems.4 Lack of domain expertise and education among healthcare providers, patients, 

and researchers in particular poses a critical barrier to the implementation of PGx-guided therapies 

in clinical settings as this leads to difficulty understanding and interpreting test results, in addition 

to limited research conducted regarding the clinical impact of such technologies.5 

1.2.  Existing PGx Resources and Limitations 

Given that there are many causes for interindividual variability in treatment response as well as a 

need for guidance in interpreting PGx screening results, multiple independent bodies of experts have 

published research and guidelines to inform PGx-guided treatment. The Clinical Pharmacogenetics 

Implementation Consortium (CPIC) is one such group that has generated a set of specific drug 

recommendations to guide prescribing practices in the presence of genetic test results. CPIC has 

established 43 evidence-based clinical guidelines for 151 commonly prescribed medications. These 

recommendations were created based on a large body of evidence showing the impact of known 

PGx alleles in altering drug metabolism or response. Level A refers to gene-drug pairs where genetic 

information “should be used” for prescribing decisions and alternative therapies or dosing are highly 

likely to be effective and safe. At least one moderate or strong action (change in prescribing) is 

recommended for Level A pairs. Level B refers to pairs where genetic information “could be used” 

to change prescribing because alternative therapies/dosing are extremely likely to be as effective 

and as safe as non-genetically based dosing. Other international committees with their own sets of 

guidelines include The Dutch Pharmacogenetics Working Group (DPWG), and the French National 

Network (Réseau) of Pharmacogenetics (RNPGx).6 The Pharmacogenomics Knowledge Base 

(PharmGKB), is a resource that aims to comprehensively aggregate, curate, and characterize PGx 

knowledge including the literature and guidelines from these distinct sources.7 

While these resources are highly comprehensive, most require a moderate to high degree of 

domain knowledge to understand and interpret the provided information. Clinicians and patients, in 

particular, need PGx expertise to understand reports and utilize them to inform treatment decisions. 

Clinicians typically receive limited PGx training and therefore rely heavily on these resources for 

guidance.5,8–12 Moreover, differences among guidance sources and the rapid pace of new discoveries 

and guidelines create potential for misunderstandings and confusion. While PharmGKB curates, 
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aggregates, and presents guidance across sources, clinicians, patients, and researchers may prefer 

an interface that allows them to query and access targeted information using natural language instead 

of menus and tables. 

1.3.  Opportunities for Large Language Models to Guide PGx 

Large language models (LLMs) represent a major advance in artificial intelligence, allowing for the 

creation of seemingly intelligent chatbots which can interpret questions and assist with various tasks. 

LLMs have shown promise in a variety of natural language tasks, including those in medicine. For 

example, chatbots using LLMs can accurately answer patient queries in a conversational manner 

preferred by patients. GPT-4 has also achieved human-level accuracy on the United States Medical 

Licensing Exam (USMLE), outperforming the minimum passing threshold on short answer and 

multiple-choice questions.13 LLMs have been proposed for integration into clinical workflows to 

handle administrative tasks, which include managing appointment scheduling by patient request, 

answering routine inquiries about medication or treatment plans, and assisting in the preparation of 

medical records.14,15 Additionally, LLMs can support clinical decision-making by providing real-

time information retrieval and analysis, potentially reducing the cognitive load on healthcare 

professionals and improving patient outcomes.16 For these reasons, advances in LLMs have created 

an exciting opportunity to build chatbots to assist with complex medical specialties like PGx, 

providing a powerful and intuitive interface to access pharmacogenetic knowledge. 

Despite the promise of LLMs in medicine, there are significant issues that must be addressed 

before widespread clinical integration. These models are limited to the information they were trained 

on and can produce fabricated responses with an authoritative and confident tone when lacking 

information. There are numerous examples of this phenomenon across disciplines, but this poses a 

particularly large barrier to use in healthcare, where real time patient decisions rely on the presence 

of accurate information and mistakes can cost lives.17–19 Moreover, LLMs are costly to update and 

retrain as new information becomes available.20–22 This poses a challenge in fields where clinical 

guidelines are routinely updated, such as in PGx, and even current state-of-the-art LLMs had their 

training data capped several months before the latest CPIC guideline release. Despite these risks, 

LLMs are already being employed by clinicians, patients, and researchers to answer medical 

questions and their performance must be studied in order to understand their limitations.23 

1.4.  Prior work on LLMs for PGx 

PGx is a specialized area of medicine with limited and variable levels of coverage in the US medical 

and pharmacy curriculum.5,10–12 Despite this, PGx has a wide impact on several specialties due to 

the variety of drugs with actionable guidelines. Therefore, leveraging LLMs in this field has the 

potential to significantly enhance clinical practice and patient care. For instance, Murugan et al., 

used GPT-4 and retrieval-augmented generation (RAG) to build PGx4Statins, a PGx chatbot for 

answering questions about statin therapy guidelines.24 However, the limitations of LLMs may pose 

a particular risk in this field, as PGx guidelines are revised and updated irregularly as new evidence 

becomes available, and inaccurate or outdated advice may result in adverse drug reactions or 
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treatment nonresponse. As such, any PGx chatbot would need to be thoroughly vetted before clinical 

implementation is possible. 

While the performance of LLMs at answering general medical questions has been demonstrated, 

there is limited data on how LLMs perform with PGx queries. Prior to now, there have been no 

comprehensive, publicly available benchmarks to assess the performance of LLM chatbots in 

answering PGx queries. PGx4Statins was benchmarked manually, requiring a team of scorers to rate 

LLM responses based on the criteria of accuracy, relevancy, risk management, language clarity, bias 

neutrality, empathetic sensitivity, citation support, and hallucination limitation on a 1-5 scale. While 

this likely represents a gold-standard approach for evaluating real-world performance of a PGx 

clinical chatbot, PGx4Statins was only able to be tested on a small number of questions and for a 

single drug, demonstrating the limitations of this evaluation strategy.24 As new chatbots and 

language models are released, a more scalable solution is needed to comprehensively test the 

accuracy of these tools, so that we can then prioritize top performers for more rigorous, labor-

intensive testing. 

To address the absence of evaluation strategies for PGx chatbots, we have developed PGxQA, 

a resource for evaluating the performance of LLMs in a variety of PGx-related tasks for multiple 

identified stakeholders: patients, clinicians, and researchers. PGxQA consists of a large corpus of 

PGx questions generated directly from CPIC data resources, CPIC PGx guidance for Level A drug-

gene pairs, or provided by experts in the field. In addition, PGxQA includes tools for higher 

throughput manual and automated evaluation of accuracy and completeness. PGxQA’s question set 

covers all of the CPIC Level A guidelines across several dimensions, such as translating genotypes 

into phenotypes, naming the dbSNP ID(s) for variant(s) that define a particular star-allele, and most 

importantly, translating phenotypes into clinical recommendations. These resources will help 

promote the responsible development of medical chatbots by allowing us to assess their knowledge 

of PGx topics, thus lowering barriers to implementation of PGx in the clinic and providing easier 

access to PGx knowledge for clinicians, patients, and researchers. 

2.  Methods 

2.1.  Automated Question Generation 

To generate a meaningfully large corpus of evaluation questions, a significant proportion of the 

question bank was generated using custom python scripts to extract relevant information from the 

‘CPIC Data’ database from their GitHub repository and format the information as question-answer 

pairs.25 The psycopg2 package was used to load and query CPIC’s postgresql database and pandas 

was used to output tables of questions.26–28 

Due to a large degree of redundancy in questions and the potential for an over-weighting of 

pharmacogenes with many defined star alleles in our overall scoring, we implemented a subsetting 

tool which takes each set of questions and drops redundant questions to maintain roughly even 

proportions of questions based on which genes they cover and what answer choices they cover. All 

generated questions are available for download, such that users can run the entire set or generate 

custom subsets based on their own criteria. 
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2.2.  LLM Querying 

To query the various studied LLMs, we wrote a set of python scripts to load in our questions and 

send them to a local or remote LLM server. We defined a universal base prompt for all LLMs to 

ensure that all LLMs are working with similar basic instructions. We used the ‘openai’ python 

package along with an OpenAI API key to remotely query GPT-3.5-turbo, GPT-4-turbo, and 

OpenAI’s latest model as of writing, GPT-4o. We were also able to use the ‘openai’ python interface 

to send queries to a locally hosted instance of the open-source LLM Llama 3. Lastly, we used the 

‘requests’ library in python to connect to Google’s Generative Language REST API to query Gemini 

1.5 Pro, Google’s flagship LLM product.29 We used our python code to query the LLMs with all of 

the questions in our subsets, outputting tables containing the original question, question metadata, 

the ground-truth reference answer, the LLM answer, and some automated scoring metrics. 

2.3.  Manual Question Generation 

2.3.1.  External Provided Questions 

While the structured information within the CPIC database allows us to cover a large proportion of 

the potential use cases for a PGx chatbot, we sought out real world sources of PGx questions to 

represent what information is being sought by actual clinicians, researchers, and patients. We 

acquired a set of questions sent to PharmGKB scientists from 2020-2024, containing queries about 

PGx and the PharmGKB scientists’ responses. Additionally, we obtained an anonymized set of 

questions and answers from Penn Medicine’s Pharmacogenetics Consult Service, which provided a 

rich source of clinician-centric questions on PGx testing, results interpretation, and other relevant 

queries. We manually pruned these datasets to stay within our scope of queries about PGx 

information retrieval and formatted them into tables as short answer questions for our LLMs. 

2.3.2.  Adversarial Questions 

To assess how the models perform when presented with incorrect information, insufficient 

information, or information outside of the scope of queries regarding PGx, we devised sets of 

structured adversarial questions. These queries were structured to be nearly identical to the question 

bank extracted directly from the CPIC database, with the exception of having extraneous or missing 

information. For these queries, we evaluate whether LLMs answer that sufficient information was 

not available to answer the question, scoring based on the rate of refusal to respond. We additionally 

ran the whole set of LLM queries, giving the LLMs the option to refuse to respond, as to compare 

refusal rates between standard and adversarial queries. 

2.4.  Automated LLM Metrics 

To rapidly score the large corpus of questions and reduce reliance on expert labor, we generated a 

set of automated scoring functions to directly measure or approximate the performance of the LLMs 

on each specific task. 
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2.4.1.  Numeric Scoring 

For questions requiring a numeric answer, such as the allele frequency tests, LLMs were instructed 

to format their response as a number. We then parsed out this number and calculated the mean 

absolute deviation (defined as the mean of the differences) between the LLM answer and the 

reference answer for the entire question set. 

2.4.2.  Information Retrieval Scoring 

For questions where the task involved returning non-sentence information such as dbSNP IDs, gene 

symbols, or generic drug names, we instructed the LLMs to return the desired information in a 

predictable format that can be parsed using regular expressions or by splitting a defined delimiting 

character like ‘;’. For question sets where there are multiple values making up the answer (for 

example to list all of the drugs which have CPIC guidelines linked to a particular gene), performance 

was measured as precision and recall, where precision is the proportion of values in the LLM answer 

that are found in the reference answer, and recall is the proportion of values in the reference answer 

that were correctly included in the LLM answer. 

2.4.3.  Multiple Choice Scoring 

For question sets where the questions had a small finite set of possible answers, we constrained them 

to multiple choice, where the LLM was told to select the correct answer from a provided list of 

options, facilitating the process of detecting if the LLM answered correctly programmatically. For 

these queries, the accuracy of the LLM in identifying the correct response was computed as the 

proportion of answers that were correctly selected. 

2.4.4.  Automated Text Similarity Metrics 

In the case of short-answer questions where we wanted the LLMs to answer in one or two sentences, 

it is nontrivial to directly score the accuracy without human graders with the expertise to evaluate 

the answers, which presents a scalability issue. To roughly approximate human scoring, we 

computed automated text similarity metrics between the LLM answer and a human-written 

reference answer. Specifically, we compute the cosine similarity of the answers under different text 

embedding models as well as BERTScore using the microsoft/deberta-xlarge-mnli base model. We 

selected the model that most closely resembled human judgement by comparing the embedding 

scores’ concordance with human-scored answers.30–34 We then calculated the “win-rate” of the LLM 

answers by looking at the percentage of answers where the LLM similarity score to the reference 

answer was higher than the LLM similarity score to a generic discordant answer. For example, if 

asked to make a clinical recommendation, where the correct answer is to avoid the drug and the 

discordant answer is to take the drug as normal, the LLM would “win” if its answer has higher 

similarity to the reference answer than the discordant answer. 
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2.5.  Human Review of LLM Answers 

2.5.1.  Concordance with Automated Metrics 

To determine which text metric best captures the semantics of PGx recommendations, we manually 

reviewed a set of 77 short-answer questions and responses from GPT-4o. For each question, we 

manually annotated whether the LLM answer was closest to the ground truth reference answer, or 

an alternative response containing a discordant recommendation. Using these human labels as 

ground truth, we computed the F1 score of each text metric by classifying an example positive if the 

LLM-reference pair has the highest metric value among all LLM-response pairs.30–34 We found that 

BERTScore Precision maximizes agreement with human judgment. 

2.5.2.  Subject Matter Expert Reviews 

We recruited 4 PGx experts to perform a granular manual review of a selected subset of short-answer 

LLM responses. For each question, reviewers were shown a human-written and LLM-generated 

response in randomized blinded order and asked to rate each answer on a five-point Likert scale 

along attributes of accuracy (i.e. "This response is clinically/scientifically accurate"), completeness 

(i.e. "This response contains all of the necessary information to address the question fully"), and 

safety (i.e. "This answer does not pose any danger to human health or safety). For each question, 

reviewers were also presented with the relevant CPIC guideline document. Ratings were collected 

using the open-source Data Annotator for Machine Learning tool35, which was deployed on an AWS 

EC2 instance with a public IP address so that expert reviewers from around the country could easily 

work on the assigned scoring task or quit and return to the task later. 

2.6.  Data Analysis and Visualization 

The results of our various scoring approaches were analyzed in a Jupyter notebook with pandas, 

which is included in the GitHub repository for this project.27,28,36 All plots were generated using the 

matplotlib and seaborn python packages.37,38 

3.  Results 

3.1.  The PGxQA Question Corpus 

In total, the PGxQA question corpus consists of 110,207 questions covering different areas of PGx. 

While we subsequently present our own tools for querying and evaluating LLMs using this 

expansive dataset, we make available the entire set of questions as a resource agnostic of 

downstream evaluation approach. We detail the question types covered in Table 1.  
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Table 1: Representative examples of PGxQA questions generated from CPIC database or external sources 

Question 

Type 

Description Number of 

questions 

Example Prompt Expected Response 

Allele 

frequency 

Ask for a value indicating the 

allele frequency of a given 

allele in a population. 

2,548 “What is the average allele frequency of ABCG2 rs2231142 reference 

(G) in the African American/Afro-Caribbean population? Respond with 

just a number, rounded to 4 decimal places, with no additional text.” 

0.9651 

Allele 

definition 

Ask for dbSNP IDs for 

variants that define or are part 

of a given allele. Note that 

some alleles consist of 

multiple SNPs. 

901 “What SNPs are in the allele definition for CFTR F1052V? Provide a 

dbSNP ID (also known as an rsID, starting with rs) when available.” 

rs150212784 

Allele 

function 

Determine how an allele 

affects the overall function of 

a gene. 

1,111 “What is the allele functionality of CYP2C9 *9? Please select the 

answer from the following choices: {'Normal function', 'Decreased 

function', 'Uncertain function', 'No function', 'Unknown function'}, and 

respond with only your selection.” 

Normal function 

Genes to 

drugs 

Ask for drugs with actionable 

CPIC guidelines for a given 

gene. Note that multiple 

drugs can be listed. 

22 “Which drugs have actionable CPIC guidelines for CYP2C19? Please 

respond with nothing but a list of generic drug names delimited by ';'.” 

pantoprazole;sertraline;o

meprazole;lansoprazole;

amitriptyline;citalopram;

voriconazole;escitalopra

m;clopidogrel 

Diplotype 

to 

phenotype 

Ask what the defined 

pharmacogenetic phenotype 

is for a given set of alleles in 

a gene. 

101,138 “What is the pharmacogenetic phenotype for CYP2C9 *1/*1? Please 

select the answer from the following choices: {'Intermediate 

Metabolizer', 'Normal Metabolizer', 'Poor Metabolizer', 

'Indeterminate'}, and respond with only your selection.” 

Normal Metabolizer 

Drugs to 

genes 

Ask what genes a clinician 

might want to include in a 

panel given what drug a 

patient is taking OR what 

genes have actionable 

guidelines for certain drugs 

for an interested researcher. 

Note that multiple genes can 

be listed. 

79 (each); 158 

(total) 

Clinician: “I want to give my patient paroxetine. What genes should I 

include in a pharmacogenetics panel? Please respond with nothing but a 

list of gene symbols delimited by ';'.” 

 

Researcher: “What genes have actionable pharmacogenetic guidelines 

for paroxetine? Please respond with nothing but a list of gene symbols 

delimited by ';'.” 

Clinician: CYP2D6 

 

Researcher: CYP2D6 

Phenotype 

to category 

Given an individual with a 

certain allele and a drug, 

provide a guideline for that 

phenotype-drug combination 

if applicable in terms of drug 

dosing (multiple choice). 

Note: this is a multiple choice 

version of “Phenotype to 

guideline”. 

2,145 “What would be the clinical guidance for someone who is HLA-

B*57:01 negative for HLA-B with regards to taking abacavir? Please 

respond with just 'Avoid' if the guidance is to avoid the drug or take an 

alternate drug, 'Alter dose' if the guideline is to raise, lower, or start 

with a specific dose, or 'Unchanged', if there are no clinical 

recommendations or there is no deviation from standard care for this 

phenotype and drug.” 

Unchanged 

Phenotype 

to guideline 

Ask the LLM to, given an 

individual with a certain 

allele and a drug, provide a 

guideline for that allele-drug 

combination if applicable in a 

short-answer format (not 

multiple choice). 

Note: this is a short answer 

version of “Phenotype to 

category”. 

2,133 “What would be the clinical guidance for someone who is HLA-

B*57:01 negative for HLA-B with regards to taking abacavir?” 

Use abacavir per 

standard dosing 

guidelines 

Adversarial 

questions 

(refusal) 

For the above categories, 

provide a similar prompt, but 

with one of the entities 

(genes, drugs, alleles, etc.) 

being fabricated or incorrect. 

A model is expected to refuse 

to answer.  

36 “What SNPs are in the allele definition for QSTG1 reference (C)? 

Provide a dbSNP ID (also known as an rsID, starting with rs) when 

available or answer UNKNOWN if unknown.” 

UNKNOWN 

External 

Questions 

Questions provided by one or 

more external sources, as 

described in Section 2.3.1. 

 

Note that these were all 

scored manually using expert 

raters, as described in Section 

2.5.2. 

15 “My patient underwent a percutaneous coronary intervention (PCI) and 

I want to prescribe clopidogrel. They had pharmacogenetic testing and 

are a CYP2C19 rapid metabolizer (*1/*17).  Do they need a different 

dose of clopidogrel from the standard 75 mg daily?” 

“Per the current CPIC 

guidelines, patients who 

are CYP2C19 poor 

metabolizers have 

significantly reduced 

CYP2C19 activity, and 

should avoid clopidogrel 

if possible due to 

increased risk of adverse 

cardiac and 

cerebrovascular events.” 
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3.2.  Automated Performance Metric Results 

3.2.1.  Quantitative or Categorical Responses 

OpenAI’s GPT models almost universally performed better than Llama or Gemini on numeric, 

information retrieval, and multiple-choice query metrics (Table 2). In particular, GPT-4o, 

outperformed or was in second place for nearly every metric. However, overall performance varied 

widely across question categories, with models performing worse at Allele Definition, Allele 

Function, Diplotype to Phenotype, and Phenotype to Category questions than the other question 

categories. Performances of less than 0.5 for most metrics and LLMs indicate that allele-related 

questions were more likely to lead to incorrect answers, potentially because allele definitions are 

dependent on contextual information such as genes. This potentially highlights that LLM training 

data or approaches may not properly encode allele information, particularly if they do not 

incorporate tabular data like the CPIC allele tables. Additionally, the number of star alleles has 

grown massively as new variants and combinations of variants are discovered. Limited references 

to these alleles in scientific literature likely contribute to poor performance, since LLMs primarily 

draw from natural language and at baseline struggle with tabular data.39 

In contrast, other categories saw stronger performance such as the “Genes to drugs” or “Drugs 

to genes” categories, particularly in the average recall of the LLMs in identifying the expected 

entities. This indicates that entities such as drugs and genes, which have been described in text for 

much longer, and across a wider variety of sources, may be better encoded within the LLM weights. 

However, the precision in these categories was lacking for several LLMs, indicating that such LLMs 

may be prone to so-called “hallucinations” when responding to these questions, or may make claims 

backed up by inconclusive evidence. 

Table 2. Mean scores for each automated question category except for Phenotype to Guideline. 

The top scoring model for each category is bolded 

Question Category Metric Llama 3 Gemini Pro 1.5 GPT3.5 GPT4 GPT4o 

Allele frequency Mean Absolute Deviation 0.1178 0.1465 0.1147 0.0601 0.0561 

Allele definition Average Precision 0.1443 0.1341 0.1750 0.2599 0.2599 

 
Average Recall 0.2274 0.1422 0.2107 0.2221 0.2229 

Allele function Accuracy 0.3856 0.3791 0.3333 0.5033 0.4771 

Genes to drugs Average Precision 0.2870 0.1364 0.5459 0.4760 0.6843 

 
Average Recall 0.3955 0.1104 0.6810 0.6719 0.6300 

Diplotype to phenotype Accuracy 0.3770 0.3455 0.2565 0.3665 0.4346 

Drugs to genes (clinician) Average Precision 0.3177 0.1706 0.2169 0.4424 0.5992 

 
Average Recall 0.7679 0.4494 0.7152 0.8481 0.9367 

Drugs to genes (researcher) Average Precision 0.4325 0.3430 0.2968 0.5580 0.8091 

 
Average Recall 0.7489 0.5190 0.7278 0.6667 0.8418 

Phenotype to category Accuracy 0.4365 0.3538 0.3212 0.4385 0.5635 

Phenotype to guideline BERTscore Precision Win rate 0.7056 0.5499 0.7178 0.7251 0.7056 
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3.2.2.  Short Answer Responses 

After comparing each text embedding method to human classification results, the BERTScore 

Precision metric was the most concordant with human similarity assessments in indicating which of 

several reference answers the GPT-4o-generated response was the most concordant with (Figure 

1a., Supplementary Table S1).30–34 Because this metric seemed the closest to capturing human 

judgment on a broad scale, we used it as an automated scoring proxy for LLM performance on our 

short answer “Phenotype to guideline” tests. Based on automated tests, GPT-4-turbo slightly 

outperformed GPT-3.5-turbo, GPT-4o, and Llama 3 in average win rate as defined in the methods 

(Figure 1b.). However, Gemini-Pro seems to greatly underperform relative to its counterparts, 

having an average win rate roughly 0.15 lower than the other models, indicating that its answers 

likely significantly diverged from the other models and from the ground truth reference. 

3.2.3.  Refusal Assessment 

When given the option to refuse to respond, LLMs had highly variable rates of refusal on 

misspecified and properly specified questions (where misspecified refers to questions where there 

is not sufficient information to answer, or there exist no clinical guidelines for the requested 

information). Ideally, a medical chatbot should refuse to answer misspecified questions (a refusal 

rate of 1 is best) and answer properly specified questions (a refusal rate of 0 is best). Llama, Gemini, 

and GPT3.5 all refused to answer both types of questions at roughly equal rates. Llama and Gemini 

tended to refuse very infrequently (<0.2 refusal rate) in either circumstance, while GPT-3.5 refused 

at roughly equal rates for both circumstances (~0.3 refusal rate) (Figure 2). A low refusal rate for 

misspecified queries might indicate a higher tendency to hallucinate information when given 

confusing or contradictory queries. In contrast, GPT-4 and GPT-4o showed a higher rate of refusal 

for misspecified questions (~0.7) compared to properly specified questions (~0.3), indicating that 

these two models exhibit ability to identify questions with incorrect information as well as a 

propensity to avoid hallucinations, though there remains significant room for improvement. These 

results are further broken down in Supplementary Table S2, which shows the refusal rates for 

different categories. 

  
Figure 1: a.) Scorer concordance with human ratings of response similarity as defined by the F1 of the agreement 

for the Phenotype to Guideline question category for GPT-4o. b.) Model win rates in Phenotype to Guideline Tests. 

 a.  b. 
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Figure 2: Refusal rates of the different LLMs for misspecified and properly specified question sets. 

3.3.  LLM Results with Human Scoring 

3.3.1.  Manual LLM Metrics 

Although the emphasis of this work is on large scale benchmarks that can be employed widely, even 

in settings where manual expert review would be intractable, it is undeniable that expert reviewers 

provide invaluable understanding of the nuances and details of PGx which cannot easily be 

measured by automated scorers and text similarity scores. We recruited 4 PGx experts to manually 

score a set of GPT-4o responses to 15 short answer questions, and had those same experts score the 

human-written reference answers. On average, GPT-4o performed lower than the reference answer 

in all categories, with ‘Accuracy’ having the largest gap (Table 3). While these results reflect that 

GPT-4o performed well for many questions, there were some answers where it provided highly 

incorrect or even dangerous responses, such as when it gave incorrect recommendations on 

tacrolimus PGx in the context of liver transplant. 

4.  Discussion 

This work provides a framework and dataset to evaluate LLM-based chatbots in their ability to 

answer PGx questions derived from gold-standard PGx data sources. In demonstrating our 

framework, we have highlighted the strengths and weaknesses of LLMs in handling a wide range 

of PGx queries, providing guidance for future improvements. 

4.1.  Avenues for Improving LLMs 

The main limitations we identified in LLM-based chatbots are their especially poor accuracy for 

queries requesting numeric answers as well as newer or less common star alleles, their tendency to 

Table 3. Average Likert scores for Accuracy, Completeness, and Safety of GPT-4o and 

reference answers as scored by PGx experts 

Metric GPT4o Reference Answer Performance Gap 

Accuracy (Likert) 3.917 4.917 -1.000 

Completeness (Likert) 4.167 4.533 -0.367 

Safety (Likert) 4.083 4.850 -0.767 
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invent false information instead of refusing to answer unknown queries, and their inability to 

understand the quality of the underlying sources of their claims. These are broader issues in LLM 

research, and many techniques have been employed to address them. Prompt-engineering involves 

devising specific prompts to elicit more comprehensive, more accurate, and better-worded responses 

from LLMs, which is inexpensive and requires minimal technical expertise, making it highly 

accessible.40 However, its ability to enhance results is limited, and excessive engineering can lead 

to increased token usage per query, potentially raising costs and complexity in processing time.41,42 

This approach was employed in many of the structured answer questions in PGxQA and yielded 

more concise and readily usable information. 

Fine-tuning LLMs on specific datasets of PGx questions, such as those generated in this study, 

presents an opportunity for models to better understand and respond to domain-specific queries. 

This approach has been shown to improve the relevance and accuracy of LLM responses. Although 

fine-tuning can be expensive, requiring significant computational resources like GPUs to train and 

update the model, it provides a tailored solution for domain-specific prompts.43 However, fine-tuned 

models can still hallucinate, as they rely on pre-trained embeddings.44  

Retrieval augmented generation (RAG) incorporates a retrieval mechanism into LLMs, enabling 

the model to directly source information from an updated knowledge base. This approach is 

relatively cheap and straightforward to maintain, as updating the knowledge base is less resource-

intensive compared to training the LLM itself.45 This is ideal for domains such as PGx, where 

knowledge bases are constantly updated. This also reduces the risk of hallucinations by providing 

the model with direct access to accurate data sources. However, RAG systems require large context 

windows for effective querying and a higher degree of human intervention is involved to teach the 

LLM how to access and utilize these external sources.44,46 

To address the needs efforts are underway by the PharmGKB/CPIC group at Stanford to create 

AI-ready data for consumption by LLMs. In addition, collaborative efforts are underway by Dr. 

Roxana Daneshjou and Dr. Klein’s groups at Stanford to develop both clinician-forward and patient-

forward tools using generative AI to disseminate this knowledge on the current PharmGKB website 

and in the future, in the ClinPGx resource. 

4.2.  Limitations of PGxQA 

PGxQA is intended to be a framework for initial evaluation of a chatbot in answering PGx questions, 

particularly in answering questions concordant with pre-existing guidelines (such as information 

from CPIC, PharmGKB, and others). As shown above, PGxQA provides a variety of metrics that 

provide insight into several dimensions of the performance of LLMs. However, it is important to 

recognize that PGxQA has several limitations due to the way that it was devised and developed with 

a focus on automated assessment. First, the questions in PGxQA are largely created automatically 

from public PGx data sources. Most questions are query-based—requesting information that would 

require looking up information from one database and not synthesizing knowledge across multiple 

databases or fields. This facilitates automated evaluation at the expense of being able to understand 

this dimension of LLMs, referred to as “multi-hop reasoning”. To mitigate this, handcrafted 

questions and actual questions asked of PGx researchers and clinicians are included through the 
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“External Questions'' category, though LLM responses to these questions cannot fully be assessed 

automatically.  

Our emphasis on automated scoring approaches, while valuable for large-scale evaluation, 

introduces other limitations as well. We engineered the prompts to instruct the LLM to return 

answers in our desired format to properly score responses for our information retrieval tasks, 

introducing a small possibility that asking for results in this strict format alters performance. As 

shown in the comparison between the clinical and researcher versions of our drug to genes questions, 

the LLMs do seem to have variable performance when similar questions are asked in different ways. 

However, this represents a weakness of LLMs that must also be studied prior to clinical use due to 

the heterogeneous nature of real-life queries. There are also limitations to our text-similarity-based 

scoring, as text embeddings do not fully capture the nuances of human judgment. Despite these 

compromises, we believe that PGxQA will still provide useful metrics for chatbot evaluation and 

we anticipate that future work may address many of the limitations of PGxQA and of LLM chatbots. 

4.3.  Future Directions 

Going forward, we expect PGxQA to serve as an automatic evaluation framework to continually 

evaluate LLMs. This initial evaluation has shown dramatic improvements in performance in more 

recent models, such as GPT-4o, relative to older iterations such as GPT3.5. We anticipate that 

further advancements in model architecture and training will strengthen the ability of these models 

to function as a valuable resource in PGx. Using PGxQA, we can continually monitor improvements 

in LLM performance and assess new technologies as they are unveiled. The automatic generation 

of questions from the CPIC database, which is routinely updated, will also ensure that LLMs are 

updated with the latest information and clinical guidelines. The metrics presented in PGxQA will 

be continually refined to best reflect the latest evidence. As PGx is a continually evolving area of 

study, it is essential to have a scalable framework for ongoing evaluation to ensure that model 

improvements translate into tangible benefits for the field in terms of accuracy and relevance.  

The future of PGx chatbots holds significant promise as LLMs become increasingly integrated 

into healthcare settings to provide clinical recommendations and support. These chatbots will be 

able to use large quantities of PGx literature and evidence to strengthen and personalize their 

responses to clinician, patient, and researcher queries. The development of advanced LLMs, coupled 

with emerging techniques like RAG, will help ensure that PGx chatbots can reliably provide 

personalized and accurate evidence-based guidance regarding medication intake and dosage. 

However, the future of these chatbots depends on rigorous continual assessment of their 

performance. The resources developed in PGxQA represent a first-in-class approach to guide 

automated LLM evaluation, prioritizing accuracy, completeness, and safety for PGx chatbots. 

5.  Supplemental Materials and Data Availability 

Supplemental tables and the author contributions list are available at: 

https://ritchielab.org/publications/supplementary-data/psb-2025/pgxqa 

All code, questions, LLM answers, and scoring results are available at: 

https://github.com/KarlKeat/PGxQA/ 
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