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Accurate prediction of suicide risk is crucial for identifying patients with elevated risk burden, 
helping ensure these patients receive targeted care. The US Department of Veteran Affairs’ suicide 
prediction model primarily leverages structured electronic health records (EHR) data. This approach 
largely overlooks unstructured EHR, a data format that could be utilized to enhance predictive 
accuracy. This study aims to enhance suicide risk models’ predictive accuracy by developing a model 
that incorporates both structured EHR predictors and semantic NLP-derived variables from 
unstructured EHR. XGBoost models were fit to predict suicide risk– the interactions identified by 
the model were extracted using SHAP, validated using logistic regression models, added to a ridge 
regression model, which was subsequently compared to a ridge regression approach without the use 
of interactions. By introducing a selection parameter, α, to balance the influence of structured (α=1) 
and unstructured (α=0) data, we found that intermediate α values achieved optimal performance 
across various risk strata, improved model performance of the ridge regression approach and 
uncovered significant cross-modal interactions between psychosocial constructs and patient 
characteristics. These interactions highlight how psychosocial risk factors are influenced by 
individual patient contexts, potentially informing improved risk prediction methods and personalized 
interventions. Our findings underscore the importance of incorporating nuanced narrative data into 
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predictive models and set the stage for future research that will expand the use of advanced machine 
learning techniques, including deep learning, to further refine suicide risk prediction methods. 

Keywords: machine learning, suicide risk, clinical notes, electronic health records, Veterans 

1. Introduction

Veterans are at an elevated risk of suicide, underscoring the critical need for advanced risk 
stratification methods within the US Department of Veterans Affairs. The primary tool currently in 
use is Recovery Engagement and Coordination for Health – Veterans Enhanced Treatment 
(REACH-VET), an AI-driven model that utilizes structured data to assess and categorize suicide 
risk 1,2. This model plays a crucial role in pinpointing Veterans who are at the highest risk and 
disproportionately contribute to the annual suicide statistics 3. 
    Recent research efforts have focused on augmenting the REACH-VET model by integrating 
unstructured data sources, such as clinical notes, to uncover additional predictors of risk 4,5. Our 
previous studies have aimed at identifying specific risk groups and stratifying the impact of various 
textual suicide risk factors within these groups 6–10. By using REACH-VET to establish baseline 
risk, we have developed NLP models that employ semantic databases and textual analysis to track 
risk factors across different risk tiers and determine optimal intervention timing. 
     Our prior research effectively identified novel NLP-derived variables that complement 
traditional demographic and structured risk predictors. By matching cases and controls based on 
their risk percentiles as measured through structured predictors, we sought to control for potential 
confounding factors. Controlling for confounding factors, however, does not address the possibility 
of effect modification, an area that remains relatively underexplored in this context. Understanding 
how risk factors differ by Veteran subgroups is crucial not only for improving predictive accuracy 
but also for enhancing the explainability of how psychosocial factors relate to suicide risk across 
diverse groups. Exploring these interactions could lead to interventions that are more tailored and 
effective, underscoring the importance of this research for future clinical applications. 
     Classification and regression trees (CART) are particularly useful for examining effect modifiers 
among predictors through conditional decision splits. Previous studies have demonstrated their 
utility in revealing complex statistical interactions. Despite the effectiveness of CART in managing 
interactions, a significant challenge persists due to the overwhelming number of NLP variables 
compared to the relatively fewer structured predictors and patient-level clinical factors. This 
imbalance complicates their effective integration into the predictive model. This disparity 
necessitates innovative approaches to manage and interpret the extensive data generated by NLP 
techniques within our predictive models in the context of these patient factors. 
     This manuscript describes our methodology for refining risk prediction models by integrating 
both structured and unstructured data within a risk-matched Veteran population, aiming to deliver a 
more intricate comprehension of suicide risk. Our approach not only seeks to provide more pertinent 
risk assessments tailored to specific subpopulations but also aims to demonstrate how machine 
learning models can effectively identify effect modifiers of crucial psychosocial variables based on 
patient characteristics. These modifiers, once validated through conventional statistical regression 
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methods, have the potential to significantly improve the interpretability and precision of existing 
models for assessing suicide risk. 
 
2.  Methods 

2.1.  Patient Selection 

To establish our study group, we integrated 
data from the VA Corporate Data Warehouse 
(CDW) Electronic Health Records (EHR) with 
mortality information from the VA-
Department of Defense Mortality Data 
Repository 11. This allowed us to pinpoint 
Veterans who died by suicide and interacted 
with VHA healthcare services in 2017 or 2018, 
totaling 2,842 cases. Following established 
recommended guidance for matched case-
control studies that focus on infrequent events, 
we matched each suicide case with five 
controls. Assistance from the VA Office of 
Mental Health and Suicide Prevention was 
crucial in selecting control subjects who were 
treated at the same VHA facility and during the 
same period as the cases. Controls were chosen 
to match the deceased cases’ REACH-VET 
risk percentile and were alive at the time the 
cases died (totaling 14,042 controls) 12. 
Controls were unique and non-overlapping, 
such that no cases could share the same 
controls. We validated the effectiveness of our 
matching approach by evaluating the 
standardized mean differences in various 
demographic and clinical parameters between 
cases and controls (Table 1). In a prior study 
that analyzed risk trends in a national sample 
of recent VA suicide deaths 12, we found that patients at varying suicide risk tiers (high, 
moderate/med, and low), have very different diagnostic, service usage, and demographic patterns. 
To best develop targeted risk models, we stratified the present study’s sample using these risk tiers.    

2.2.  Data Collection and Partitioning 

2.2.1.  Clinical Note Retrieval 

We retrieved unstructured EHR notes from the CDW that were recorded within 30 days before each 
case’s death. This timeframe was chosen based on earlier research that highlighted the significance 
of clinical notes during the period immediately leading up to death by suicide. To prevent the 

Table 1: Patient Characteristics/Demographics 
  

Case Control p-
value (N=2842) (N=14042) 

Demographics    
  Female  119 (4.2%) 1079 (7.7%) 0.149 
  Non married 1688 (59.4%) 7861 (56.1%) 0.068 
  Married 1154 (40.6%) 6163 (43.9%) 0.038 
  Homeless_prior24m 212 (7.5%) 1189 (8.5%)  

  Veteran 2834 (99.7%) 13971 
(99.6%) 0.017 

  Rural 635 (22.3%) 3215 (22.9%) 0.013 
Risk Tier   0.007 
  High 389 (13.7%) 1940 (13.8%)  
  Moderate 1436 (50.5%) 7040 (50.2%)  
  Low 1017 (35.8%) 5044 (36.0%)  
Race   0.273 
  Am. Ind. or Asian Pacific 61 (2.1%) 308 (2.2%)  
  Black 154 (5.4%) 1638 (11.7%)  
  Hispanic 124 (4.4%) 875 (6.2%)  
  Unknown 129 (4.5%) 306 (2.2%)  

  White 2374 (83.5%) 10897 
(77.7%) 

 

Age    0.008 
  Mean (SD) 60.5 (18.0) 60.4 (15.7)  
Deployment    
  Vietnam 1100 (38.7%) 5862 (41.8%) 0.066 
  Afghanistan or Iraq 957 (33.7%) 4761 (33.9%) 0.017 
Mental Health Diagnosis/ Risk 
Flag 

 
  

  Anxiety 1341 (47.2%) 6686 (47.7%) 0.009 
  Bipolar 545 (19.2%) 2238 (16.0%) 0.085 
  Conduct 56 (2.0%) 316 (2.3%) 0.02 
  Depression 1876 (66.0%) 9137 (65.2%) 0.02 
  Neurocognitive 316 (11.1%) 1671 (11.9%) 0.025 
  OCD 80 (2.8%) 325 (2.3%) 0.032 
  PTSD 1060 (37.3%) 5273 (37.6%) 0.005 
  Personality 389 (13.7%) 1599 (11.4%) 0.070 
  Sleeping 1331 (46.8%) 7270 (51.8%) 0.100 
  Substance 1249 (43.9%) 5401 (38.5%) 0.112 
  Trauma 1442 (50.7%) 7235 (51.6%) 0.016 
  Combat  731 (25.7%) 2680 (19.1%) 0.159 
  Military Sexual Trauma  126 (4.4%) 875 (6.2%) 0.080 
Number of Inpatient Mental Health Days within 1 Year of Death  
  Mean (SD) 17.2 (66.1) 15.6 (64.6) 0.024 
Prescriptions    
  Opioid Rx_prior12 885 (31.1%) 4338 (30.9%) 0.004 
  Opioid Rx_prior24 1104 (38.8%) 5686 (40.5%) 0.035 
  Mood Stabilizer Rx_prior12 1017 (35.8%) 4718 (33.6%) 0.045 
  Mood Stabilizer Rx_prior24 1178 (41.4%) 5455 (38.9%) 0.052 
  Antipsychotic Rx_prior12 616 (21.7%) 2364 (16.9%) 0.122 
  Antipsychotic Rx_prior24 708 (24.9%) 2791 (19.9%) 0.120 
  Antidepressant Rx_prior12 1573 (55.3%) 7661 (54.6%) 0.014 
  Antidepressant Rx_prior24 1733 (61.0%) 8401 (59.9%) 0.022 
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influence of potential data leakage / endogeneity, we excluded notes from the final two days before 
death and any notes that referenced death or a high likelihood of death within the five days prior to 
the suicide. Additionally, we removed patients from our analysis if their records contained more 
than six times the average number of notes, thus preventing a disproportionate focus on individuals 
with higher healthcare engagement. This resulted in a dataset of 92,399 notes from 389 cases and 
1,940 controls at high risk, 107,532 notes from 1,436 cases and 7,040 controls at moderate risk, and 
44,613 notes from 1,017 cases and 5,044 controls at low risk. Model training and interpretation was 
conducted on the note-level, whereas performance was reported on the patient level (see 2.4). 

2.3.  Data Preparation 

2.3.1.  Derivation of NLP Variables 

To capture word counts, we first converted all our text to lowercase, removed stop words like 
“his/hers”, “were/would”, “and/with”, etc. and tokenized our data set into unigrams or bigrams. We 
used Sentiment Analysis and Cognition Engine (SÉANCE) to analyze sentiment from these tokens, 
transforming our corpus into 516 semantic variables. SÉANCE is a Python-based software package 
that is accessible on VA servers and has been found to be comparable to the commonly used 
Linguistic Inquiry and Word Count (LIWC) software 13,14. SÉANCE utilizes a variety of established 
linguistic databases, including SemanticNet 15,16, General Inquirer Database (GID) 17, EmoLex 18,19, 
Lasswell 20, Valence Aware Dictionary and sEntiment Reasoner (VADER) 21, Hu–Liu 22,23, Harvard 
IV-4 17, and the Geneva Affect Label Coder (GALC) 24. Each database consists of expert-derived
dictionary lists and rule-based systems 25, comprising over 250 unique variables, which can be
assessed in positive and negative iterations, leading to 516 SÉANCE variables.

2.3.2.  Extraction of Patient Characteristics 

Using data from the Corporate Data Warehouse (CDW), we extracted a comprehensive array of 
information encompassing demographics, social determinants of health, patterns of service usage, 
prescription histories, and diagnostic details. This data set included key demographic variables such 
as age, gender, marital status, and race. Social determinants like homelessness and military service 
were also considered, providing context to the healthcare challenges these Veterans may face. The 
service usage patterns captured included the number and types of visits to emergency departments 
and mental health services, which are critical indicators of health engagement and potential crisis 
points. Prescription data detailed the use of critical medications such as opioids and antipsychotics, 
while diagnostic information covered a wide range of mental health conditions from anxiety and 
depression to PTSD and substance abuse disorders (Table 1). We observed a significant disparity 
in the number of traditional patient characteristics available (n=66) compared to the number of NLP-
derived variables (n=516), which include terms and their negations extracted from clinical notes. A 
complete list of variables included in the model can be found in the Supplementary Material, 
available at the following URL: 
https://github.com/jlevy44/NLP_Demographics_VA/tree/main/Data_Dictionaries . 

2.3.3.  Training, Validation and Test Patient Cohorts 

For each risk tier, patients were stratified into training, validation, and test sets using an 80%, 10%, 
and 10% split, respectively. We utilized the GroupShuffleSplit function from the scikit-learn 
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package (Python v3.8) to ensure that all notes and patient characteristics from the same individual 
were grouped into the same set 26. This approach prevents any notes from a single patient from being 
distributed across different sets, thereby avoiding data leakage and ensuring the integrity of test set 
statistics. Variables were standardized via scaling parameters estimated from the training set. 

Figure 1: Workflow overview: A) The number of SÉANCE variables dwarfs the number of patient characteristics / 
demographics, B) Cross-modal interactions between SÉANCE and patient characteristics can be identified using a 
CART approach (e.g., XGBoost) through conditional decision splits between the different sets of variables; C) Shows 
how the relationships between NLP variables (squares) and suicide risk vary across different demographic subgroups 
(triangles). The lines represent these varying associations, providing simplified interpretations based on the GLM 
approach. D) Selection of SÉANCE and patient characteristics variables controlled through α, intermediate values 
reflect selection of both variable types, increasing likelihood of detecting cross-modal interactions 

2.4.  Selected Machine Learning Models 

All 582 patient characteristics / demographic and SÉANCE variables were modeled simultaneously 
to predict whether a clinical note corresponded to a patient who had died by suicide. Note-level 
predicted probabilities (𝑝 = 𝑓(�⃗�)) were averaged across the notes within each patient into a final 
patient-level score (�̅�) reflecting the risk of suicide used as the final comparison. We evaluated 
model performance on both the validation and test sets by calculating the patient-level area under 
the receiver operating characteristic curve (AUROC) which compared �̅� to whether the patient died 
by suicide. To ensure robustness, we employed a 1000-sample non-parametric bootstrapping to 
compute 95% confidence intervals for AUROC estimates. 
     We aimed to evaluate the performance of two machine learning models: 1) Penalized high-
dimensional generalized linear models, exemplified by ridge logistic regression 27, which apply an 
L2-norm penalty to shrink model coefficients (set to 2.5e5 after a coarse hyperparameter search). 
This method reduces model complexity and prevents overfitting by addressing multicollinearity. 2) 
Classification and regression trees (CART) 28, as implemented by Extreme Gradient Boosting 
(XGBoost). XGBoost is an advanced form of gradient boosting that incrementally refines decision 
trees by concentrating on errors from previous trees 29. It uses a gradient descent algorithm to 
meticulously adjust tree parameters, optimizing them based on the error gradient relative to earlier 
predictions. While the ridge regression model serves as a baseline for performance comparison, the 
XGBoost model is expected to enhance performance by capturing statistical interactions within and 
across modalities—specifically among patient characteristics / demographic and SÉANCE 
variables, as well as interactions between these modalities. XGBoost was specifically chosen for its 
capability to assign weights to features, directly influencing their selection probabilities during 
model training. This feature is crucial for effectively balancing the influence of different predictors 
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(see 2.5). While LightGBM and BART (Bayesian Additive Regression Trees) offer similar 
functionalities, they were not selected for specific reasons 30,31. LightGBM, for instance, only 
reweights the feature split gain after their initial selection, without altering initial selection 
probabilities. BART, on the other hand, allows for assignment of priors for variable selection, but 
computational demands are significantly higher, making it less suitable for our current scope but a 
potential candidate for future exploration. Ridge regression was selected as representative of 
generalized linear modeling approaches after initial comparisons to LASSO and ElasticNet 32. 
     The primary objective of this study is not simply to compare Ridge regression with XGBoost. 
Rather, our aim is to show that the interactions identified by XGBoost can offer additional valuable 
information, enhancing the predictive accuracy of Ridge regression and other generalized linear 
models that are known for their parsimonious interpretations. Consequently, we expect that 
incorporating these interactions as predictors—a method we have named Ridge-Int—will 
significantly improve the performance of Ridge regression, bridging the gap between complex 
machine learning and traditional statistical models 33. 

2.5.  Key Contribution: Weighting the selection of NLP variables and patient characteristics 

In tree-based models, the selection of variables for inclusion at various levels or nodes typically 
occurs with uniform probability. This approach can inadvertently lower the probability of selecting 
variables from smaller sets of variables, such as patient characteristics, compared to larger sets like 
those from NLP-derived variables. Consequently, this bias in variable selection could hinder the 
identification of meaningful interactions between patient characteristics / demographic and NLP 
variables, as the former are less likely to be chosen as nodes or leaves in the model. 
     To address this imbalance, we hypothesize that strategically weighting the selection of variables 
from these two distinct sets—patient characteristics / demographic and NLP variables—could be 
crucial for uncovering optimal interactions between them. In this study, we conduct a sensitivity 
analysis to explore the impact of different weighting strategies on the detection of interactions 
(Figure 1). Specifically, we investigate three scenarios: 

1. Upweighting Patient Characteristics / Demographics: We hypothesize that increasing the 
selection probability of patient characteristics (including demographics) could enhance the 
identification of interactions within these features. 

2. Upweighting NLP Features: Conversely, increasing the weight of NLP features is expected 
to surface more interactions within the NLP data. 

3. Balanced Weighting: Applying an equal weighting strategy, adjusted for the numerical 
disparity between the sets (upweighting patient characteristics / demographics proportionally 
to the number of NLP features), is hypothesized to facilitate the detection of cross-modal 
interactions, balancing the trade-offs between the two. 

To test these hypotheses, we introduce a selection hyperparameter, 𝛼 ∈ [0,1], which determines the 
extent to which one set of predictors is favored over the other. The weighting formula for individual 
patient characteristics / demograpgics is defined as α* !!"#$%"

!&'()*+,-./01
+ 𝜖, where !!"#$%"

!&'()*+,-./01
 represents 

the ratio of the number of NLP variables to patient characteristics, adjusting for their discrepancy. 
Conversely, the weight for selecting NLP variables is set as 1-α+ ϵ. Thus, an α value of 0 would 
give priority to NLP variables, highlighting interactions within the NLP data, whereas an α of 1 
would prioritize patient characteristics / demographics, enhancing the identification of interactions 
solely between structured patient characteristics. Here, ϵ is a small constant (ϵ = 1e-7) introduced to 
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ensure that the probability of selecting variables from either predictor set never reaches zero as 
required by the XGBoost package. This minimal 
adjustment allows for the rare but possible selection of 
variables from the non-prioritized set. 

2.6.  Model Fitting, Interaction Extraction and 
Validation for Experimental Comparisons 

We trained XGBoost models using various values for 
α, including 0 (favoring SÉANCE variables), 0.1, 0.3, 
0.5, 0.7, 0.9, and 1 (favoring patient characteristics). 
The model fitting process involved a 50-iteration randomized search for optimal hyperparameters 
(Table 2), with early stopping for tree boosting based on validation set performance. This procedure 
was repeated for all α and risk tiers.  
     For each value of α, we used the interactiontransformer package 33 to select candidate 
interactions for further analysis via the tree explainer. This assigns each interaction a global SHAP 
score, which represents the average influence of the interaction across all notes and patients, 
reflecting its overall contribution to the model’s performance 34. SHAP interaction scores were 
computed separately for the validation and test sets. To validate candidate interactions, we examined 
the top 1000 interactions identified by SHAP. For each interaction, we fit unpenalized generalized 
linear models (GLM, logistic regression) incorporating the interaction term (Figure 1C): 

𝑙𝑜𝑔𝑖𝑡(𝑝!"#$#%&) = 𝛽' + 𝛽(𝑓𝑒𝑎𝑡𝑢𝑟𝑒( + 𝛽)𝑓𝑒𝑎𝑡𝑢𝑟𝑒) + 𝛽*𝑓𝑒𝑎𝑡𝑢𝑟𝑒( ∗ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒) 
     A candidate interaction was confirmed as validated if the p-value for the coefficient of the 
interaction term, 𝛽*, was less than 0.05 divided by 1000. This stringent criterion reflects the 
Bonferroni adjustment applied to account for multiple comparisons (1000 candidate interactions), 
ensuring the robustness of our findings against Type I errors. 
     To evaluate the effectiveness of SHAP values in identifying and prioritizing key interactions, we 
used Fisher’s exact test to compare the likelihood of GLM-validated variables appearing in the top 
100 versus the top 1000 SHAP-ranked interactions. By calculating an odds ratio (OR) and a 
corresponding p-value as a measure of enrichment in the top 100 set, we quantified the degree to 
which SHAP values not only identify but also accurately prioritize the most impactful interactions. 
     We hypothesized that validated interactions would be predominantly found among the highest-
ranked interactions by SHAP, indicating the effectiveness of SHAP in identifying the most 
influential interactions in terms of their contribution to the model’s predictive accuracy. This step 
serves not only to validate the interactions but also to verify the reliability of SHAP’s ranking 
mechanism in prioritizing the most statistically significant and predictive interactions a. 
     For the validated interactions, we categorized the nature of each interaction based on its modality: 
either within modality interactions (such as demographic-demographic or SÉANCE-SÉANCE) or 
cross-modality (demographic-SÉANCE) interactions. We quantified these categories by calculating 
their proportions within the overall set of validated interactions, providing insight into the patterns 
of relationships that significantly contribute to the model. 
     After categorizing the interactions, we incorporated them into the predictive model. Specifically, 
we enhanced the Ridge regression model by adding either the validated interactions or the top 50 

 
a Further clarification on these calculations can be found in Supplementary materials: “Clarification on Role of 

Algorithms and Methods”, at: https://github.com/jlevy44/NLP_Demographics_VA/blob/main/suppl_material.docx  

Table 2: XGBoost hyperparameter search grid 
Hyperparameter Values 

colsample_bynode 0.25, 0.5, 0.75, 1 
colsample_bylevel 0.25, 0.5, 0.75, 1 
colsample_bytree 0.5, 0.75, 1 
subsample 0.6, 0.8, 1 
min_child_weight 1, 3, 5, 7 
max_depth 3, 4, 5, 6 
gamma 0, 1, 5, 10 
reg_alpha 0, 0.1, 1, 10 
reg_lambda 0, 0.1, 1, 10 
Number of Trees 25, 50, 100 

 

Pacific Symposium on Biocomputing 2025

173

https://github.com/jlevy44/NLP_Demographics_VA/blob/main/suppl_material.docx


interactions ranked by p-value—whichever count was greater. This enhanced model, referred to as 
Ridge-Int, was designed to assess the impact of including significant interaction terms on the 
predictive accuracy. The performance of the Ridge-Int model was compared against the baseline 
Ridge model, which did not include interaction terms. We evaluated the models’ effectiveness on 
both the validation and test sets using the AUROC, with 95% confidence intervals calculated using 
the previously described bootstrapping method. 
     Following the validation and integration of interactions into our models, we plotted the AUROCs 
for XGBoost, Ridge, and Ridge-Int against the hyperparameter α, along with the odds ratios for the 
significance of validated interactions and the proportion of validated interactions that were cross-
modal within the validation and test set. We anticipated that the interactions identified by XGBoost 
would enhance the performance of Ridge regression, and that the performance metrics for both 
XGBoost and Ridge-Int would likely reach a plateau at an intermediate α value between 0 and 1. 
Similarly, we expected the enrichment of validated interactions and the proportion of cross-modal 
interactions to saturate at a midpoint α, demonstrating the relevance of cross-modal interactions for 
enhancing predictiveness. This analysis was stratified and performed across each risk tier, allowing 
for a nuanced evaluation of how the inclusion of interactions influences model performance within 
distinct suicide risk tiers. 

2.7.  Interpretation of Randomly Selected Interactions 

To deepen our understanding of the interactions between different modalities, we analyzed the 
statistical interaction models fitted to the data, employing estimated marginal means as a post hoc 
comparison to elucidate the effects of various psychosocial constructs obtained through NLP on 
suicide risk 35,36. These effects were specifically examined as conditioned by patient characteristics, 
and similarly, how patient characteristics / demographics influence the impact of psychosocial 
factors on suicide risk (Figure 1C). For illustrative clarity, effect estimates for randomly selected 
interactions were presented in detailed tables and supportive visualizations demonstrating the 
conditional/stratified effects of these psychosocial constructs by patient characteristics. 

3. Results

3.1.  Affirming the Relevance of Cross-modal Interactions 

In our study, we adjusted the selection probability between two predictor sets to investigate their 
potential trade-offs in influencing model performance. By altering the hyperparameter α, we 
modulated the selection bias towards either patient characteristics / demographics or SÉANCE 
variables within the XGBoost model, and then examined the nature and impact of the interactions 
identified by SHAP. The interactions that were extracted and validated using unpenalized GLMs– 
prior to their inclusion in Ridge-Int– with interaction terms demonstrated statistical validity. 
Importantly, these interactions, once confirmed through statistical modeling, showed a high 
enrichment within the top 100 SHAP-ranked interactions, evidenced by significant odds ratios. This 
result supports the effectiveness of XGBoost and SHAP in pinpointing genuine interactions. 
     Our analysis revealed that interactions were more prevalently validated at intermediate values of 
α, suggesting an optimal balance at these levels for extracting meaningful interactions between 
different types of data (Figure 2B, Table 3). The proportion of cross-modal interactions that were 
validated peaked at these intermediate α values (Figure 2C, Table 3). This finding corroborates the 
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hypothesis that adjusting α allows for fine-tuning of the XGBoost model to effectively balance the 
contribution of both predictor sets, enhancing the model’s capacity to uncover and utilize significant 
interactions between different data types. It should be noted that the enrichment of validated 
interactions was especially pertinent for low-risk tier patients, though a lower proportion of these 
interactions were cross-modal in nature. 
 

 
Figure 2: Model Comparison and Interaction Validation/Delineation: A) Test set model performance reported via 
the AUROC on the patient-level, aggregated across notes, for each model type and risk tier. B) Odds Ratio (OR) 
versus α. OR reflects the enrichment of validated interactions among the top-ranked interactions identified through 
SHAP, serving as a measure of how well the statistical model validates the interactions identified by SHAP. C) The 
proportion of validated interactions that were identified as cross-modal as a function of α. 

3.2.  Model Performance Comparisons 

In our study, we hypothesized that cross-modal interactions would significantly enhance the 
predictive performance in suicide risk assessment, particularly when analyzing aggregated data 
across patient notes. Our results confirmed this hypothesis, demonstrating the critical role of these 
interactions in improving model accuracy. Notably, the XGBoost model, which explicitly accounts 
for statistical interactions through conditional decision splits, consistently outperformed the 
traditional Ridge regression model, which does not inherently consider interactions (Figure 2A, 
Table 4). Upon integrating these extracted interactions from the XGBoost model into the Ridge 
regression frameworks (Ridge-Int), we observed marked performance improvement for the low and 
high risk patients and modest improvement in the moderate risk patients for α=0.1 (Figure 2A, 
Table 4). 
    Interestingly, the most pronounced gains were observed when the selection parameter α, which 
balances the influence of structured patient characteristics / demographics versus SÉANCE features, 
was set to intermediate values. This suggests that neither purely patient characteristics nor purely 
SÉANCE features are sufficient on their own; rather, it is their combination and the interactions 
between them that drive the predictive accuracy of the models. This phenomenon was corroborated 
by the relative alignment of these optimal α values with where the highest number of crossmodal 
interactions were identified and incorporated into the statistical modeling of the Ridge regression 
(Figure 2A,C, Tables 2,3). 
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Table 3: Validation and Analysis of XGBoost-Derived Interactions via SHAP and Subsequent Logistic 
Regression Modeling. OR indicate the degree to which validated interactions as confirmed through logistic 
regression modeling are enriched among the top SHAP-ranked interactions, reflecting the effectiveness of the 
XGBoost in identifying relevant interactions. Additionally, the table lists the proportion of these validated interactions 
that were characterized as cross-modal, highlighting their potential for bridging distinct data modalities. 

Risk α OR p % Cross- 
Modal 

Risk α OR p % Cross- 
Modal 

Risk α OR p % Cross- 
Modal 

Low 0 1.3 0.672 0.0% Med 0 2.0 0.082 0.0% High 0 2.4 0.017 0.0% 
0.1 11.5 <0.001 2.6% 0.1 5.0 <0.001 10.3% 0.1 3.1 <0.001 7.1% 
0.3 8.9 <0.001 2.9% 0.3 8.6 <0.001 9.8% 0.3 3.1 <0.001 9.3% 
0.5 10.9 <0.001 6.7% 0.5 6.3 <0.001 10.0% 0.5 4.4 <0.001 6.3% 
0.7 7.7 <0.001 2.5% 0.7 4.8 <0.001 7.3% 0.7 2.9 <0.001 8.6% 
0.9 7.4 <0.001 1.7% 0.9 4.6 <0.001 7.6% 0.9 2.9 <0.001 8.6% 

1 7.4 <0.001 1.7% 1 4.6 <0.001 7.6% 1 2.9 <0.001 8.6% 

Table 4: Test Set Model Performance for XGBoost and Ridge Regression models, comparing performance across 
low, medium, and high-risk tiers. The AUROC values are presented alongside 95% CIs calculated through 1000-
sample non-parametric bootstrapping. For Ridge Regression, ‘n/a’ indicates the performance of the model without the 
inclusion of interactions derived from XGBoost, serving as a baseline comparison. The variations in AUROC values 
across different α (ranging from 0 to 1) illustrate the impact of emphasizing either patient characteristics / 
demographics or SÉANCE features, or a balanced consideration of both, in predicting suicide risk. 

XGBoost 
Risk α AUROC 2.5%CI 97.5%CI Risk α AUROC 2.5%CI 97.5%CI Risk α AUROC 2.5%CI 97.5%CI 
 Low 0 0.622 0.565 0.681 Med 0 0.602 0.555 0.646 High 0 0.715 0.642 0.788 

0.1 0.678 0.624 0.735 0.1 0.658 0.61 0.705 0.1 0.687 0.61 0.767 
0.3 0.672 0.618 0.721 0.3 0.637 0.59 0.681 0.3 0.726 0.65 0.799 
0.5 0.679 0.622 0.734 0.5 0.629 0.579 0.681 0.5 0.705 0.627 0.781 
0.7 0.669 0.611 0.723 0.7 0.638 0.589 0.686 0.7 0.698 0.618 0.782 
0.9 0.669 0.611 0.723 0.9 0.637 0.587 0.683 0.9 0.698 0.618 0.782 

1 0.669 0.611 0.723 1 0.637 0.587 0.683 1 0.698 0.618 0.782 
Ridge Regression 

Risk α AUROC 2.5%CI 97.5%CI Risk α AUROC 2.5%CI 97.5%CI Risk α AUROC 2.5%CI 97.5%CI 
 Low n/a 0.651 0.593 0.704 Med n/a 0.615 0.566 0.666 High n/a 0.645 0.561 0.729 

0 0.653 0.596 0.706 0 0.615 0.565 0.665 0 0.646 0.562 0.729 
0.1 0.668 0.61 0.72 0.1 0.622 0.574 0.672 0.1 0.693 0.602 0.778 
0.3 0.66 0.6 0.714 0.3 0.609 0.559 0.659 0.3 0.692 0.603 0.773 
0.5 0.658 0.599 0.715 0.5 0.602 0.552 0.652 0.5 0.707 0.621 0.784 
0.7 0.653 0.594 0.708 0.7 0.612 0.562 0.66 0.7 0.691 0.602 0.775 
0.9 0.653 0.594 0.708 0.9 0.607 0.557 0.655 0.9 0.691 0.602 0.775 

1 0.653 0.594 0.708 1 0.607 0.557 0.655 1 0.691 0.602 0.775 
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α=0.3 α=0.5 α=0.7 
Risk Interaction log(OR)log(OR) Interaction og(OR)log(OR)l Interaction log(OR) p-adj 
High days_inpatMH_prior_12mo:Notlw_Lasswell -0.02 7.4e-07 Sleeping:vader_neutral -0.98 2.6e-02 Calc_age:Know_GI 0.16 1.0e-04 

days_inpatMH_prior_12mo:Coll_GI_neg_3 -0.03 4.0e-14 antipsy_prior24:vader_compound 0.19 1.0e-05 age_55_74:Hu_GI_neg_3 3.59 3.4e-10 
Substance:negative_adjectives_component 0.12 4.3e-02 age_55_74:Posaff_Lasswell -4.22 1.6e-03 days_inpatMH_prior_12mo:Tool_GI

_neg_3 
0.02 7.4e-05 

Calc_age:negative_adjectives_component 0.01 7.0e-08 Substance:Work_GI -4 1.5e-03 age_55_74:Socrel_GI_neg_3 2.74 4.8e-04
age_55_74:Coll_GI_neg_3 10.47 2.0e-22 Calc_age:Endslw_Lasswell 0.1 7.9e-03 elix_cat:Know_GI 3.24 1.2e-06 

Med elix_cat:fear_and_digust_component 0.74 3.2e-03 elix_cat:Male_GI -4.36 9.5e-04 elix_cat:Male_GI -4.36 9.5e-04 
elix_cat:Fear_EmoLex 3.26 6.1e-03 elix_cat:fear_and_digust_component 0.74 3.2e-03 moodst_prior24:Abs_GI 4.22 8.4e-03 
Substance:Powcoop_Lasswell_neg_3 -12.25 2.4e-05 opioid_prior12:Submit_GI_neg_3 -4.52 7.0e-05 di_cat:hu_liu_pos_perc_neg_3 -0.19 1.9e-02 
Nonmarried:hu_liu_pos_perc_neg_3 0.41 7.4e-03 MH_cat:hu_liu_pos_nwords 3.1 2.5e-02 Trauma:vader_positive 2.24 4.6e-04 
Unknown:Pleasur_GI_neg_3 8.63 3.4e-02 MH_cat:Tranlw_Lasswell 2.85 1.8e-03 Unknown:Pleasur_GI 9.05 1.8e-02 

Low elix_cat:fear_and_digust_component 0.74 3.2e-03 elix_cat:Male_GI -4.36 9.5e-04 elix_cat:Male_GI -4.36 9.5e-04 
elix_cat:Fear_EmoLex 3.26 6.1e-03 elix_cat:fear_and_digust_component 0.74 3.2e-03 moodst_prior24:Abs_GI 4.22 8.4e-03 
Substance:Powcoop_Lasswell_neg_3 -12.25 2.4e-05 opioid_prior12:Submit_GI_neg_3 -4.52 7.0e-05 di_cat:hu_liu_pos_perc_neg_3 -0.19 1.9e-02 
Nonmarried:hu_liu_pos_perc_neg_3 0.41 7.4e-03 MH_cat:hu_liu_pos_nwords 3.1 2.5e-02 Trauma:vader_positive 2.24 4.6e-04 
Unknown:Pleasur_GI_neg_3 8.63 3.4e-02 MH_cat:Tranlw_Lasswell 2.85 1.8e-03 Unknown:Pleasur_GI 9.05 1.8e-02 



 
 

 

3.3.  Select Interpretation of Findings from Cross-modal Workflow 

The XGBoost model successfully identified numerous cross-modal interactions, specifically at 
intermediate α, of which we selectively analyzed a few at random to elucidate their implications for 
decision-making and potential therapeutic advancements. For example, in Table 5, the results from 
GLM of validated interaction terms are presented. Table 6 and Figure 3 provide detailed 
breakdowns of four key interactions with further interpretation presented in the Discussion. 
 

 
Figure 3: Interpretation of Conditional Effects of Psychosocial Constructs Across Patient Subgroups for 
Randomly Selected Validated Interactions. A) Suicide risk associated with mood stabilizer use fluctuates based on 
mention of denial in clinical notes. B) Intensified impact of failure mentions in notes on suicide risk among Vietnam 
Veterans compared to other Veterans. C) Varying effects of mentioning communication forms, such as mentions of 
social media, on suicide risk across age groups, with younger Veterans showing heightened sensitivity. D) Increased 
suicide risk due to negative sentiments among patients with bipolar disorder. Note that interpretations are on the note-
level. Risk scale is expressed using the inverse logit link function. 
 

Table 6: Select Interactions and Conditional Effects from Logistic Regression Analysis on Randomly Selected 
Validated Interactions. Interaction terms are denoted using “:”, followed by a conditional effect, denoted by “|”, 
representing the evaluation of the variable’s effect under specific conditions set by the modifying variable on the right. 
Conditional effects are derived using estimated marginal means.  

Risk Term log(OR) p-value 
High moodst_prior12:Notlw_Lasswell -1.11e-05 8.95e-12 

Notlw_Lasswell|moodst_prior12 8.55e-06 7.40e-11 
Notlw_Lasswell|No moodst_prior12 -2.54e-06 7.96e-03 
Vietnam:failure_component 3.21e-06 5.25e-03 
failure_component|Vietnam -1.15e-06 1.45e-01 
failure_component|Not Vietnam 2.07e-06 1.40e-02 

Med Calc_age:Comform_GI -3.38e-07 1.87e-04 
Comform_GI|Age=30 1.24e-05 4.05e-05 
Comform_GI|Age=50 5.63e-06 3.25e-04 
Notlw_Lasswell|Age=70 -1.14e-06 4.56e-01 

Low Bipolar:vader_negative 1.37e-05 6.51e-06 
vader_negative|Bipolar -2.08e-06 4.66e-02 
vader_negative|Not Bipolar 1.16e-05 4.61e-05 

 

4.  Discussion 

Recent advancements have emphasized the critical role of machine learning and the analysis of 
unstructured clinical reports in augmenting suicide risk prediction models 37. These developments 
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aim to complement existing models that leverage structured predictors already operational within 
the VA system, which have been further repurposed to categorize risks into defined tiers for 
population studies 12. Despite these innovations, the dynamics between predictors derived from 
structured and unstructured data, and their combined potential to improve suicide risk prediction, 
remain largely unexplored. 
     In this study, we aimed to refine suicide risk predictive models to cater specifically to relevant 
subgroups. Our strategy involved developing models that balanced the inclusion of both structured 
and unstructured (NLP) predictors. This approach allowed us to delve into the trade-offs and 
synergies between these predictor types through traditional statistical modeling of the interactions 
extracted from them. We introduced a predictor set selection parameter, α, to regulate the extent to 
which predictors from semantic NLP variables (SÉANCE) and structured EHR were utilized. 
     Our findings revealed that this methodology not only enhanced the accuracy of suicide risk 
predictions but also illuminated how cross-modal interactions between NLP variables and structured 
predictors could demonstrate the altered risk associated with various psychosocial constructs based 
on patient characteristics / demographics and vice versa. The ability to discern these interactions 
underscores the pivotal role of cross-modal dynamics in improving model performance, validating 
their importance in complex predictive tasks such as suicide risk assessment.  
     The implications of our analytical approach are significant– we will now discuss key lessons and 
insights derived from interpreting the interaction terms (Figure 3, Tables 5, 6). A positive 
interaction effect estimate signifies an elevated suicide risk when one variable increases, conditional 
on the rise of another variable. Conversely, a negative interaction effect indicates reduced risk under 
the same conditions. For example, our analysis showed that patients with a substance use disorder 
who frequently use negative adjectives in their clinical notes are at an increased risk of suicide 38. 
In contrast, the presence of negative words has a less pronounced effect on patients without such a 
disorder. Another notable observation (Figure 3, Table 6) is that negative sentiments significantly 
elevate suicide risk among bipolar patients compared to those who are not bipolar, consistent with 
prior literature 39. These instances demonstrate how psychosocial constructs variably affect different 
patient groups, paving the way for future large-scale studies aimed at identifying novel intervention 
targets and enhancing preventive strategies in suicide risk management. 
     This study has several limitations that merit consideration and can inform future work. Firstly, 
while the predictive modeling results were aggregated across patient notes, the initial predictive 
modeling and interpretation were conducted at the individual note level. Surprisingly, models 
trained solely with patient characteristics / demographics (α=1) showed an AUROC greater than 
expected, given that they were matched based on REACH-VET percentile scores derived from these 
same characteristics. This outcome suggests two key insights: additional stratification of suicide risk 
within defined risk tiers can unearth predictive factors not captured by models trained exclusively 
on structured predictors across the entire population (i.e., effect modification by risk tier); 
furthermore, the design of XGBoost, which ensures non-zero selection probabilities for variables, 
allowed the inclusion of a small yet significant set of SÉANCE variables to bolster model 
predictiveness. We did not compare the usage of TreeSHAP to other interaction extraction 
approaches 40–42. Another limitation is that while the structured variables span over a year or more, 
the NLP variables are derived from observations within the past 30 days. Despite these observed 
limitations, the fundamental principles and broader findings of our research remain sound and valid. 
Another limitation is the statistical power to detect interactions, which may have been constrained 
by the limited sample size of this study. Future work aims to extend this analysis across a broader 
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temporal and demographic scope at the national level, which should incorporate a more diverse 
array of characteristics and potentially yield more robust findings above and beyond current suicide 
risk prediction approaches. Further external validation is limited by the focus on US veterans, and 
results may not generalize to other populations 43–46. It is common to train models on historical data 
and validate them on more recent data, which could have strengthened the validity of our findings. 
     It should also be noted that previous research has highlighted that increased care utilization 
significantly influences the REACH-VET scores used for matching and stratification by risk tier 12. 
Generally, more comprehensive data on Veterans can contribute to higher inferred suicide risk, 
whereas patients with less comprehensive records are typically assigned a lower risk. This 
variability in data completeness across different subpopulations underscores the need for our models 
to identify associations within these groups, especially since they may be differentially impacted by 
the extent of their record completeness 47–50. 
     Looking ahead, we plan to develop machine learning models that are not solely dependent on 
structured predictors for matching (i.e., randomly matched). This approach will allow us to 
potentially identify patterns that were previously obscured due to the biases introduced by data 
completeness. This could lead to more nuanced and effective predictive models that better address 
the diverse needs of all subgroups within the Veteran population. 
     The interpretation of findings from SÉANCE terms should be approached with caution 51,52. 
SÉANCE encompasses a diverse array of lexical variables, each with different standards and 
encompassing varying numbers of words. However, these terms face challenges in capturing the 
nuanced contexts in which these words are used, which can complicate the interpretation of these 
concepts beyond their mere mention. This limitation is akin to the current challenges faced in 
sentiment analysis, even with the incorporation of negation terms. Initially, we adopted a semantic 
database approach as a proof of concept for this method. While we plan to expand our analysis to 
include a “bag-of-words” approach that captures all words within the corpus, this method also has 
its limitations as it tends to disregard their context within sentences. Therefore, our future work will 
focus on employing deep learning techniques to mine for motifs and patterns that can capture more 
complex and nuanced narratives. This approach will allow us to better contextualize these constructs 
and understand their differential impacts, informing future interventions more effectively 53–58. 
     Furthermore, deep learning models offer the flexibility to weigh different forms of information—
including social determinants of health—on a patient-by-patient basis. They can also help identify 
critical timepoints for collecting notes that are most relevant to assessing suicide risk and 
determining optimal times for intervention. Our earlier work relied on count-based approaches, 
partly due to the limitations of computing resources available within the VA VINCI computing 
system. However, as advanced graphics processing units (GPU) systems become more accessible at 
the VA, we anticipate a shift towards more sophisticated deep learning approaches. 
 
5.  Conclusion 

In conclusion, this study demonstrates the potential of integrating structured and unstructured data 
sources to enhance the predictiveness of suicide risk models for Veterans. The nuanced insights 
gained from cross-modal interactions identified through this comprehensive approach can better 
appreciate the dynamic interplay between numerical data from electronic health records and rich, 
psychosocial constructures available in clinical notes. As we move forward, the incorporation of 
more advanced machine learning techniques, particularly deep learning, promises to further refine 
our predictive capabilities and offer more targeted, effective interventions and risk prioritization.  
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