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Clinical decisions to treat and diagnose patients are affected by implicit biases formed by
racism, ableism, sexism, and other stereotypes. These biases reflect broader systemic dis-
crimination in healthcare and risk marginalizing already disadvantaged groups. Existing
methods for measuring implicit biases require controlled randomized testing and only cap-
ture individual attitudes rather than outcomes. However, the ”big-data” revolution has led
to the availability of large observational medical datasets, like EHRs and biobanks, that
provide the opportunity to investigate discrepancies in patient health outcomes. In this
work, we propose a causal inference approach to detect the effect of clinician implicit biases
on patient outcomes in large-scale medical data. Specifically, our method uses proximal
mediation to disentangle pathway-specific effects of a patient’s sociodemographic attribute
on a clinician’s diagnosis decision. We test our method on real-world data from the UK
Biobank. Our work can serve as a tool that initiates conversation and brings awareness to
unequal health outcomes caused by implicit biases.∗
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1. Introduction

Implicit bias refers to unconscious and automatic associations that affect how we perceive,
evaluate, and interact with people from different social groups.1 Outside of mere cognitive
distortions, these biases held by healthcare professionals influence clinical decisions and alter
a patient’s quality of care. Implicit biases have been shown to be both harmful and pervasive
in modern-day medicine, exacerbating existing inequality in the treatment and health out-
comes of marginalized groups.2,3 For instance, unconscious attitudes held by clinicians result
in disparate outcomes where women are less likely then men to be diagnosed with myocar-
dial infarction,3 Black women in the UK and US experience higher maternal mortality than
White women,4 and low socioeconomic (SES) and non-White patients receive sub-optimal
pain management treatment compared to high SES and White patients.5,6

The recent integration of machine learning (ML) models into clinical decision-making has
highlighted the prevalence of biases in medicine. By replicating the patterns from real-world
medical data, ML models perpetuate and risk amplifying existing disparities in the medical
treatment of marginalized groups.7,8 While much attention has been given to the statistical

∗Our method is available at https://github.com/syrgkanislab/hidden_mediators
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objectives of fairness and the development of fair models, there has been comparatively less
focus on investigating the biases present in the underlying data. A method capable of detecting
implicit clinician bias in observational datasets would prevent ML models from unintentionally
perpetuating biased decisions.

However, measuring implicit bias is challenging. Existing methods for quantifying implicit
bias rely on the Implicit Association Test (IAT)9 and randomized psychological experiments
like affective priming.10 While these tests are useful for initiating dialogue, they only provide
a snapshot of individual clinician attitudes and do not guarantee a causal link to behavior or
larger systemic discrepancies of care.10

In this work, we propose a computational tool to detect clinician implicit bias in observational
datasets by measuring the causal effect of patient attributes, like race, SES, and other social
determinants of health (SDoH), on medical diagnoses. By decomposing the causal effect into
two pathways, we can separate the biological effect (the influence of a demographic attribute
on diagnosis as mediated by valid biological traits) from the implicit bias effect (how the
patient’s attribute affects a clinician’s judgement independent of their actual health state).
As it is unlikely to observe a patient’s true health state, we use observed medical data as
proxies using proximal causal inference.11 To estimate the effect of implicit bias, we propose
a novel proximal mediation method that guarantees identifiability under several assumptions.
Using real patient data from the UK Biobank, we validate our method can robustly detect
several clinician implicit biases identified from prior works. We aim for the proposed method
to serve as a bias-detection tool in dataset audits and initiate discussion on reducing systemic
discrimination in medicine.

Disclaimer: While we use the UK Biobank data for method validation, we emphasize that this
work is not a commentary on specific examples of discrimination within the UK healthcare
system. Additionally, it is crucial to clarify that our method of estimating implicit bias is not
intended to target clinicians but rather reflect on clinician behaviors within the context of
discriminatory healthcare systems.

2. Method

2.1. Background

2.1.1. Overview

According to the Hippocratic Oath, clinicians should base their diagnostic decisions on each
patient’s history and current health status, unaffected by biases or stereotypes of the perceived
patient identity. However, even in the ideal scenario of unbiased treatment, patient sociode-
mographic attributes will still influence diagnosis. Attributes including race, sex, or SES have
been shown to influence a patient’s true health status via mechanisms like genetics, lifestyle,
and weathering from systemic oppression.12–14 These biologically-mediated effects increase
the risk of certain medical conditions. For instance, patients from lower SES backgrounds
experience higher levels of stress and reduced access to healthcare, increasing their risk of
cardiovascular disease.15 In light of these known biological influences, the causal effect of a
patient’s sociodemographic attribute on their diagnosis by a clinician is therefore comprised
of two pathway effects: the biological effect and the implicit bias effect, the latter referring to

331



the clinician’s subjective biases of the sociodemographic attribute not mediated through the
patient’s actual health state.

We present the assumed causal relationships between variables as the directed acyclic graph
(DAG) in Figure 1. Dashed arrows denote optional edges, and bi-directional arrows denote
indirect confounding paths through latent variables. Let D be the binary sociodemographic
attribute and Y the diagnosis decision we wish to measure implicit bias with respect to. M
represents the latent variables encoding a patient’s true underlying health state. However,
as M is typically unknown, we instead observe Z and X as multivariate proxies of M . We
differentiate these proxies into the variables Z that do not affect the diagnostic decision Y but
could be affected by the attribute D; and the variables X which are not directly affected by
the attribute D but can influence diagnosis Y . For example, X could be recent lab reports a
clinician uses to make their diagnosis, and Z could be a patient’s survey responses to a sleep
questionnaire (assuming the survey does not influence the clinician’s diagnosis). Finally, let
W be sociodemographic confounders to control for.

We can now reframe biological and implicit bias effects using pathway causal effects. The
biological effect of attribute D on diagnosis Y is the indirect effect as mediated through the
true underlying health state M : D → M → Y . The implicit bias effect we wish to measure
is the direct effect of D → Y that flows through the edge θ and is defined as the residual of
the biological effect. We formally define bias in terms of controlled direct effects in Equation
(D.1).

Fig. 1: Assumed causal graph.

2.1.2. Related works

Measuring implicit biases requires detecting the unconscious and automatic attitudes that
shape behavior. The predominant method for implicit bias measurement thus far has been
the Implicit Association Test (IAT),9 a questionnaire developed in 1998 intended to measure
group association through word categorization. To capture clinician biases, several works have
linked clinician attitudes via their IAT score to behavioral manifestation.10,16 Other methods
for detecting implicit clinician bias include affective priming, which measures biased associa-
tions after stimulus priming; and the assumption method, which surveys clinicians’ decisions
after reading patient vignettes.17 While association tests like the IAT have been integral in
bringing awareness to medical biases, they are criticized for their arbitrary scoring system, in-
ability to predict real-world patient outcomes, and context-dependency.3,10,16,17 Furthermore,
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administering these controlled tests in every clinical encounter is impractical and unscalable.

Computational methods present a promising and scalable alternative for detecting implicit
bias in real-world medical data. While the field of ML fairness has explored bias detection, the
focus has been on identifying and mitigating bias in models rather than the data.7 In causal
inference, disentangling a causal effect into natural indirect and direct pathway effects has led
to methods that control for “fair” and “unfair” causal pathway effects. [18–21] propose metrics
for measuring fair pathway influence on outcomes and develop methods that mitigate the effect
of unfair pathways on the predicted outcome. [22] leveraged the Fairness-Aware Causal paThs
(FACTS)23 algorithm to quantify disparate pathway influence of SDoH attributes on mortality
using real-world health data. While these methods recognize an attribute’s influence on an
outcome contains both fair and unfair effects, prior works are limited to simple scenarios where
all variables are known and observed. Our work is the first to extend pathway inference to
large-scale observational data with potentially unobserved variables.

Finally, a few recent methods have explored proximal mediation analysis, where pathway
effects can be measured despite unobserved mediators by using proxy variables.24,25 However,
by relying on natural direct and indirect pathway effects, these works rely on more stringent
assumptions, require learning complicated bridge functions, and limit their analysis to simple
datasets. In comparison, our method makes several relaxations that enable application to
observational data. First, we identify controlled instead of natural effects, which presents an
equally good measurement of a biased decision yet lends to a much simpler statistical problem.
Additionally, we assume partially linear equations instead of requiring the identification of a
complex bridge function. Finally, we do not require uniqueness of the parameters unrelated to
implicit bias (i.e., the nuisance parameters for the outcome bridge function). These relaxations
enable our approach to be effective at analyzing large-scale real-world medical data.

2.2. Our method

Our goal is to identify and estimate the following controlled direct effect:

θ =

ˆ
m,w

E[Y (1,m)− Y (0,m) |W = w] p(m,w) dm dw (1)

where Y (d,m) is the potential (or counterfactual) outcome when we intervene on the attribute
D and the mediator M and set them to values (d,m); and p(m,w) is the natural probability
distribution in the data. If the controlled direct effect is nonzero, then there exists a direct
influence of the attribute D on the outcome Y , which is evidence of implicit bias.

If we observe M , the above controlled direct effect can be identified by a simple g-formula
that “controls” for M and W : θ = E[E[Y | D = 1,M,W ]− E[Y | D = 0,M,W ]]. Unfortunately,
this equation is intractable if M is unobserved. However, we show that under a few reasonable
assumptions the controlled direct effect is still identifiable.

Theorem 1 (Identification). a Consider a non-parametric structural causal model (SCM)
that respects the causal relationships encoded in Figure 1 (see Appendix D.1) and assume
there exists a “bridge function” q that solves E[Y | D,M,W ] = E[q(D,X,W ) | D,M,W ]. Then

aWe present more intuitive interpretations of each theorem and lemma in the Appendix.
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q also solves the Non-Parametric Instrumental Variable (NPIV) problem defined by the set of
conditional moment restrictions

E[Y − q(D,X,W ) | D,Z,W ] = 0 (2)

and the controlled direct effect can be identified as θ = E[q(1, X,W )− q(0, X,W )].

Identifying parameters θ using a bridge function q (where q also solves an NPIV problem)
has been extensively studied in proximal causal inference literature.26–38 However, these ap-
proaches rely on solving saddle-point problems with adversarial training or require learning
conditional density functions, both of which are statistically daunting.

We can avoid these difficult statistical tasks if we assume that the bridge function is partially
linear in D and X. The following lemma shows that partial linearity of q is implied by a more
primitive assumption of partial linearity of two other functions (proof in Appendix D.4).

Lemma 1 (Identification under partial linearity). Consider a non-parametric SCM
that respects the constraints encoded in Figure 1 and assume that X has dimension pX at
least as large as the dimension pM of M . Moreover, assume that the following functions are
partially linear:

E[Y | D,M,X,W ] = D c+MT b+XT g + fY (W ) (3)

E[X |M,W ] = F M + fX(W ) (4)

where F is a pX × pM matrix, b is a pM -dimensional vector, g is a pX-dimensional vector
and fY , fX are arbitrary non-parametric functions. If we assume the matrix F has full column
rank, then there exists a partially linear outcome bridge function

q(D,X,W ) = Dθ +XTh+ f(W ) (5)

that satisfies Equation (2), where parameter h = F+b+ gb and θ = c.

Under the assumption of partial linearity, we can simplify the estimation problem by first
removing the effect of W from all the remaining variables (see Appendix D.5), where for any
variable V we define the residual Ṽ = V − E[V | W ]. Partial linearity of q from Equation (5),
when combined with the NPIV Equation (2), implies that θ can be identified using linear
instrumental variable (IV) regression where (Z̃; D̃)c are the instruments and (X̃; D̃) are the
treatments:

E

(Ỹ − X̃Th− D̃ θ)

(
Z̃

D̃

) = 0 (Primal Equation)

Unique identification of θ seemingly requires unique identification of the other “nuisance”
parameters like h, which might be difficult to achieve as the covariance matrix E[(X̃; D̃) (Z̃; D̃)T ]

is usually not full rankd. We invoke and simplify ideas from the recent proximal inference

bF+ is the Moore-Penrose pseudoinverse of F .
cWe denote (A;B) to be concatenation of vectors A and B.
dThis could be the case if the number of proxies is much larger than the dimensionality of the latent
mediator M .
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literature35,39 to show that θ can be point-identified even if h is not. To achieve this, we
construct a moment restriction equation that is Neyman orthogonal to the nuisance parameters
h but still point-identifies θ, given sufficient quality of the proxy Z. Intuitively, we learn a new
instrument V = (D̃− γ⊤Z̃) such that V is uncorrelated with X̃ and thus estimation of θ is not
sensitive to h. Existence of such a γ is sufficient for point-identification of θ. We provide the
proof for the point identification of θ in Appendix D.7 and for Neyman orthogonality in D.8.

Theorem 2. Let h∗ be the minimum norm solution to the (Primal Equation) and assume
that the following dual equation also admits a solution γ∗:

E[X̃ (D̃ − γT Z̃)] = 0 (Dual Equation)

Furthermore, assume E[D̃ (D̃ − γT∗ Z)] ̸= 0. Then the solution θ∗ to the equation:

E[(Ỹ − X̃Th∗ − D̃ θ) (D̃ − γT∗ Z̃)] = 0 (6)

uniquely identifies the controlled direct effect θ. Furthermore, this moment restriction is Ney-
man orthogonal with respect to nuisance parameters γ∗, h∗.

Theorem 2.2 allows us to invoke the general framework of [40] to construct an estimate and
confidence interval for the controlled direct effect θ. The full estimation algorithm is presented
in Appendix D.9.

2.3. Testing and Removing Weak Instruments

Our method for uniquely identifying the controlled direct effect θ relies on several assumptions,
e.g., (Z̃; D̃) are good instruments for (X̃; D̃). To assess the validity of these assumptions, we
developed a suite of tests that must pass for the estimate θ to be valid and can be used as
validity checks by practitioners. These tests are further described in Appendix C:

(1) Primal equation violation - We develop a χ2-test to check if the primal equation admits
a solution, i.e., E[(Ỹ − X̃Th∗ − D̃ θ∗)(Z̃; D̃)] ≈ 0. Intuitively, violation of the primal test
implies either the variables X are insufficient proxies of the health state M or the residual
proxy Z̃ has a direct path to Ỹ .

(2) Dual equation violation - We develop a χ2-test to check if the dual equation admits a solu-
tion, i.e., E[X̃(D̃− γT∗ Z̃)] ≈ 0. Violation of the dual implies the variables Z are insufficient
proxies of the health state M or that the residual proxy X̃ has a direct path from D̃.

(3) Strength of identification - We perform two tests to check if V = (D̃ − γT Z̃) is a good
instrument for (i.e., retains enough information about) D̃. (a) We develop an effective
F-test41,42 to check the correlation strength of V with D̃. (b) We develop a z-test to check
if the quantity E[D̃(D̃−γT∗ Z̃)] is substantially bounded away from zero (see assumption in
Theorem 2.2). Intuitively, these tests will fail if the hidden mediator is a very deterministic
function of the attribute D.

(4) Proxy covariance rank test - To ensure the health proxies are sufficiently related, we check
the rank of the covariance matrix of X̃ and Z̃ by identifying the number of statistically sig-
nificant singular values. This rank can be viewed as an upper bound on the dimensionality
of the hidden mediator M that we can control for.
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2.3.1. Proxy selection algorithm

In practice, the initial selection of proxies X,Z may violate key assumptions, which can be
detected by the failure of one or more of the aforementioned tests. In Appendix B, we provide
an algorithm for identifying subsets ofX and Z that satisfy the necessary assumptions and thus
produce valid estimates. This proxy selection algorithm should be performed on a separate
dataset from the one used to estimate θ.

3. Experiments

3.1. Data

To validate our approach, we use the UK Biobank, a rich and accessible repository containing
genomic, imaging, and tabular health data from over 500,000 patients. Our work uses its
tabular data, which includes survey questions and biometrics collected upon an individual’s
enrollment into the biobank. In addition, several health outcomes, including medical diagnoses
via ICD10 codes, have been linked to most patients. We note and discuss the caveats of
applying our method to biobank data in Section 5.2.

Prevalence in
UK Biobank
(n=502411)

Prior works
on implicit bias

Sociodemographic attribute D Race - Asian 2.4% 43–45
Race - Black 1.8% 3–5,46,47
Gender - Female 54.4% 3,48
Disability status - On disability allowance 6.2% 49,50
Income - Household income <18,000£ 20.3% 5,14,15,51
Education - No post-secondary education 67.3% 5,51
Weight - BMI >30 24.3% 52,53
Insurance - Not on private insurance 31.4% 54

Medical diagnosis Y Osteoarthritis 18.0% 47,49
Rheumatoid arthritis 1.9% 55
Chronic kidney disease 5.0% 56,57
Complications during labor 2.4% 3,4
Heart disease 10.7% 3,15,48
Depression 6.0% 46,58
Melanoma 1.2% 59,60

Table 1: Selected sociodemographic attributes D and diagnoses Y

Prior works have proposed sociodemographic attributes that might bias clinical decisions. For
example, [48] showed that clinicians exhibited greater uncertainty when diagnosing coronary
heart disease in women compared to men. We list in Table 1 most of the attributes D and
diagnoses Y we test for implicit bias, and present the full list of the 102 (D,Y ) pairs in
Appendix E.2. To highlight the influence of clinician subjectivity, we concentrate on diagnoses
that require clinician interpretation of patient-reported symptoms, e.g., chronic pain.

Selecting health proxies for Z and X relies user intuition and medical expertise to determine
which variables have a direct relationship with attribute D and outcome Y , respectively. In
general, proxies X could be observed by the clinician during their diagnostic decision, and
proxies Z are not accessible during diagnosis but might have a direct causal relationship with
attribute D. In the UK Biobank, we select X to be the biometric variables collected by the
biobank at patient enrollment, which includes lab results and blood pressure readings. For
Z, we use survey responses of self-reported pain levels, mental health, and sleep. We list all
variables, including the sociodemographic confounders W , in Appendix E.1. Note our data
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contains a mix of binary, integer, and continuous variable types.

3.2. Evaluation metrics

3.2.1. Semi-synthetic data validation

We test if our method can retrieve a known implicit bias effect using semi-synthetic data. We
use real data from the UK Biobank for attribute D, confounders W , and health proxies X,Z.
We develop a model that computes M and a synthetic diagnosis Y with a known implicit
bias effect θ = 0.5 using linear structural equations. We test against fully continuous (Experi-
ment 1) and both binary and continuous (Experiment 2) semi-synthetic data, the latter being
more realistic in real-world medical data. Our semi-synthetic data generation method is fully
described in Appendix A. As a baseline, we compare two variants of ordinary least squares
(OLS): (a) given we know M , we fit an OLS model over W,D,X, and M to predict Y ; (b) in
the more realistic scenario where M isn’t known, we learn over W,D,X, and Z. We compute
the average effect estimate and confidence interval based on ±1.96 σ where the average and
standard deviation σ is taken over K=100 iterations.

3.2.2. Calculating the implicit bias effect in the UK Biobank

We next run our method on the full UK Biobank data. We compute the residuals of Z,X, Y,D

fitted on W using Lasso regression. For all models, the regularization term is chosen via semi-
cross fitting61,62 over 3 splits. We fit all models using the scikit-learn Python package. For
nuisance parameters h∗ and γ∗ we used regularized adversarial IV estimation35,63 with linear
functions and a theoretically driven penalty choice that decays faster than the root of the
number of samples.

In cases where the data may not meet the method’s assumptions, we developed a proxy
selection algorithm (see Section 2.3.1) that identifies an optimal subset of X,Z proxies for each
(D,Y ) pair using the assumption tests from Section 2.3. Although we recommend separate
data splits for proxy selection and effect estimation, we use the same dataset as our intent
is method demonstration rather than robust effect estimates. Details of the hyperparameters
used for the selection algorithm are provided in Appendix B.

For each of the 102 pairs of attribute D and diagnosis Y , we report seven metrics: the implicit
bias effect θ, the 95% confidence interval, as well as our five proposed tests from Section 2.3:
(1) the primal and (2) dual violation, (3-4) the strength of identification, and (5) the Z̃, X̃

covariance rank test. In addition, we also run the following five analyses:

Weak identification confidence interval - If the instrument identification tests from 2.3
are violated, then effect estimation can be unstable and normality-based confidence inter-
vals inaccurate. We thus compute an alternative confidence interval62 developed under the
assumption of weak instruments (see Appendix C.5 for the description).

Bootstrapping analyses - We perform several bootstrapping analyses to test the sensitivity
of the estimate. In the first analysis, given the computational complexity of recomputing the
full estimate, we compare K=10 bootstrapped iterations re-estimating the full pipeline (stage
1); K=100 iterations using the pre-computed residuals but re-estimating all other parameters
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(stage 2); and K=1000 iterations re-computing only the final Equation (6) (stage 3). Each
iteration samples 50% of the data without replacement. In the second analysis, we compare
sampling 10%, 25%, 50% or 75% of the original data for K=10 bootstrapped iterations, re-
estimating over full pipeline (stage 1). Finally, we compare different sample sizes for K = 1000

iterations re-estimating from stage 3 of the pipeline.

Influence points - Inspired by [64], we analyze influence scores, which measure how in-
fluential each data point is in the effect estimate. A significant change to the estimate after
removing a small set of highly-influential points indicates the implicit bias calculation is highly
sensitive to a few (potentially) outlier patients. We also include a preliminary interpretability
analysis that explores the distinguishing phenotypes of highly influential patients, which could
aid in determining if these subsets of patients correspond to some interpretable outlier group.
We describe how we calculate the influence score and identify highly-influential patient sets
in Appendix C.6.

Income stratification - To investigate intersectionality in implicit biases, we perform a
stratified effect estimate over different income groups where D ̸=Income.

Partial non-linearity of W - Our identification theorem allows for partial non-linearity in
the effect of W . We thus re-compute the point estimate allowing for non-linear interactions
with W using XGBoost65 models instead of Lasso.

4. Results

4.1. Synthetic data validation

The results in Table 2 demonstrate that our method is able to retrieve the true implicit
bias effect θ = 0.5 with high certainty for both fully continuous and mixed-type data, with
comparable performance to the best-case OLS where M is known. We report our method’s
coverage, RMSE, bias, standard deviation, mean confidence interval, and performance on our
five tests (from Section 2.3), as well as testing other values of θ, in Appendix F.1.

θ Our method OLS(D, W, M, X) OLS(D, W, Z, X)

Experiment 1: Continuous 0.5 0.54 ± 0.003 0.5 ± 0.01 1.10 ± 0.01
Experiment 2: Continuous and binary 0.5 0.53 ± 0.003 0.5 ± 0.01 1.385 ± 0.01

Table 2: Semi-synthetic data estimates θ and confidence interval over K=100 iterations.

4.2. Calculating the implicit bias effect in the UK Biobank

In Appendix F.2, we show the effect estimates for the (D,Y ) pairs using all proxies Z, X,
adjusting the confounders W by excluding the column corresponding to the attribute D.
However, as evidenced by the failure of the dual and primal tests, we found the initial sets
of proxies Z, X did not meet our method’s necessary assumptions. As discussed further in
Appendix F.3, we believe these test failures indicate there might exist some features in X with
a causal path from D that does not go through M or features within Z with a causal path to
Y that doesn’t flow through M . Such paths invalidate the resulting effect estimates.
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We thus found applying our proxy selection algorithm (see 2.3.1) necessary for producing valid
effect estimates. After running the algorithm to select subsets of admissible X,Z proxies (the
description and interpretation of the selected proxies can be found in Appendix F.3), we found
34 (D,Y ) pairs that pass all tests with narrow confidence intervals. We report six in Table 3
and include the remaining estimates in Appendix F.4. Note that θ > 0 implies a patient with
D is more likely to be diagnosed with Y due to clinician bias, and conversely θ < 0 implies a
patient is less likely to be diagnosed. In Section 5.2, we offer a framework for interpreting the
implications of these results.

4.2.1. Weak instrument confidence interval

As shown in Figure 2A, the confidence interval predicted under the weak instrument regime
consistently aligns with the interval under our method, thus indicating our estimate’s robust-
ness to weak instruments.

(D,Y ) θ ± 95% CI
(1) Primal

statistic < critical
(2) Dual

statistic < critical
(3) E[D̃V ] ̸= 0

statistic > critical
(4) V strength F-test
statistic > critical

(5) Cov(X̃, Z̃) rank

Low income, Depression 0.03 ± 0.02 59.9<60.5 31.9<40.1 84.1>0.4 3332.1>23.1 3
Disability insurance, Rh. Arthritis 0.06 ± 0.0 67.3<75.6 3.4<11.1 29.2>0.4 801.1>23.1 3

Female, Heart disease -0.19 ± 0.06 115.8<118.8 23.3<23.7 18.8>1.3 92.5>23.1 4
Black, Chronic kidney disease 0.14 ± 0.03 56.9<58.1 10.6<21.0 9.8>0.3 23.3>23.1 4

Obese, Osteoarthritis 0.09 ± 0.02 90.5<100.7 24.8<28.9 76.5>1.7 254.9>23.1 3
Asian, Osteoarthritis -0.06 ± 0.03 94.7<101.9 33.1<33.9 13.9>0.3 74.6>23.1 5

Table 3: Six of the 34 valid UK Biobank implicit bias effect estimates after applying our X,Z proxy
selection algorithm. Tests (1-5) are detailed in 2.3, where statistic is the given data’s statistic and

critical is the necessary critical value to be greater or less than to pass. V = D̃ − γT Z̃.

Fig. 2: Comparing effect estimates for six (D,Y ) pairs using all data with: A) weak instrument and
influence set removal (where the numbers next to the yellow bar reflect the set size of high-influence

points); B) bootstrapped subsampling 50% of the data at different stages of re-estimation.
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4.2.2. Bootstrapping analyses

In Figure 2B, we show the results of the first bootstrap analysis comparing different stages
of re-estimation. We observe that, regardless of the estimation stage, bootstrapped estimates
are consistent with the estimate from the full dataset. The consistency of the bootstrapped
estimates over different sample sizes, as shown in Appendix F.6, further support the robustness
of our method.

4.2.3. Influence points

In Figure 2A, we see that removing only a few highly-influential points leads to a significant
decrease in the magnitude of the estimated effect. To investigate, we run a preliminary in-
terpretabilty analysis where we analyze the univariate differences between patients with high
influence and those with low influence. In Figure 3A patients that strongly influence the nega-
tive implicit bias estimate for (D=Female, Y=Heart disease) are more likely to be low income,
unemployed due to disability, and suffer from depression. It is plausible such patients are the
“outliers” driving the strong negative bias estimate.

Fig. 3: A) Interpretability into high influence points. B) Income stratification

4.2.4. Income stratification

In Figure 3B we analyze the effect of stratification based on income. We see a general increase
in bias effect estimate for the low income strata and a corresponding decrease in effect for
high income strata, demonstrating potential evidence of intersectional discrimination.5,66

4.2.5. Partial non-linearity of W

In Appendix F.9, we show our implicit bias estimate with non-linear W interactions leads to
a similar effect estimates of θ.

5. Discussion

5.1. Limitations

In this work, we propose a robust causal inference method designed to detect clinician implicit
bias by estimating pathway-specific causal effects. We demonstrate the applicability of our
approach to large-scale medical data by validating on both semi-synthetic and real-world
datasets.
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However, our work contains several limitations. First, while the UK Biobank is a rich and
accessible source of medical data, most patient information is collected once upon signing up
for the biobank. Although UK Biobank has synced their records to a handful of outcomes
provided by EHR data (like ICD10 codes), it is unclear to what extent the available proxies
for X (which were collected at patient enrollment) are used by clinicians for diagnoses. Addi-
tionally, the synced ICD10 codes are from hospital records, thus excluding primary care visits.
We plan to validate our method with time-series EHR data in follow-up work.

Second, while the assumption of partially linear structural equations is crucial for enabling
better identifiability of the outcome bridge function under minimal conditions, it is possible
the ground truth equations are non-linear.

Finally, it is well known that intersectional identities shape complex patterns of discrimination
in healthcare.5,66 A more comprehensive analysis on the effect of implicit bias from intersec-
tional attributes on patient treatment would be valuable for improving equity in healthcare
outcomes.

5.2. Interpretation and application of results

While we re-iterate the intent of this work is not to diagnose specific cases of implicit bias
in the UK Biobank, our method did flag several areas of clinical inequity that have been
reported in literature. For instance, many works have reported gender-based inequality in
cardiovascular health,67 and we similarly detected an estimate of θ = -0.19 indicating clinicians
are less likely, due to implicit biases, to diagnose D=Females with Y=heart disease. In another
example, our estimate θ = -0.06 suggested clinicians are less likely to diagnose D=Asian
patients with Y=osteoarthritis, and many works have highlighted both patient- and clinician-
stigmas regarding pain-associated disorders, like osteoarthritis, in Asians.68–70

However, we did find several estimates contrary to what we expected. For example, our esti-
mate θ = 0.14 indicated clinicians are positively biased towards diagnosing Black patients with
chronic kidney disease. However, at the time of UK Biobank data collection, many doctors
relied on a race-based equation for kidney function now known to have under-detected kidney
disease in Black patients.71

To understand a discrepancy between a produced estimate and literature (or user intuition),
we recommend (1) ensuring the data used contains sufficient health proxies and satisfy all
assumptions (e.g., see biobank data limitations in 5.1); (2) investigating all mechanisms creat-
ing the medical outcome Y (e.g., hospital-specific diagnosis protocol); and (3) exploring how
the discovered bias estimate fits in context, rather than opposed, to those found in literature.
While our method does not offer a solution on how to tackle implicit biases, by bringing aware-
ness to potential areas of discrimination within a given healthcare system, detecting biases is
the first step towards creating systemic-level change through interdisciplinary collaboration
and targeted anti-bias training programs.

6. Appendix

The appendix can be found at https://github.com/syrgkanislab/hidden_mediators.
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