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We leveraged electronic health record (EHR) data from the Accelerating Data Value Across a 

National Community Health Center Network (ADVANCE) Clinical Research Network (CRN) to 

identify social risk factor clusters, assess their association with obstructive sleep apnea (OSA), and 

determine relevant clinical predictors of cardiovascular (CV) outcomes among those experiencing 

OSA. Geographically informed social indicators were used to define social risk factor clusters via 

latent class analysis. EHR-wide diagnoses were used as predictors of 5-year incidence of major 

adverse CV events (MACE) using STREAMLINE, an end-to-end rigorous and interpretable 

automated machine learning pipeline. Analyses among over 1.4 million individuals revealed three 

major social risk factor clusters: lowest (35.7%), average (43.6%) and highest (22.7%) social burden. 

In adjusted analyses, those experiencing highest social burden were less likely to have received a 

diagnosis of OSA when compared to those experiencing lowest social burden (OR 

[95%CI]=0.85[0.82-0.88]). Among those with OSA and free of prior CV diseases (N=4,405), 

performance of predicting incident MACE reached a ROC-AUC of 0.70 [0.03] overall but varied 

when assessed within each social risk factor cluster. Feature importance also revealed that different 

clinical factors might explain predictions among each cluster. Results suggest relevant health 

disparities in the diagnosis of OSA and across clinical predictors of CV diseases among those with 

OSA, across social risk factor clusters, indicating that tailored interventions geared toward 

minimizing these disparities are warranted. 
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1. Introduction

Sleep problems disproportionally affect populations experiencing health disparities1. Racial, ethnic 

and socioeconomically disadvantaged minorities are more likely to experience insufficient sleep2-8, 

sleep disorders9, and negative cardiovascular (CV) outcomes10,11. Yet, many of these conditions go 

unnoticed in these populations, largely due to lack of healthcare access focused on diagnosing and 

treating sleep disorders. Consequently, pathways linking health disparities to sleep disturbances and 

CV outcomes are largely underexplored, particularly among underrepresented populations. 

Obstructive sleep apnea (OSA) is a heterogeneous sleep disordered breathing condition and one 

of the most prevalent sleep disorders, affecting approximately 1 billion adults worldwide12. 

Epidemiological and experimental evidence supports a major role of OSA towards increasing CV 

risk13-16. However, prior studies were mostly focused on population or community-based cohorts that 

generally underrepresented important groups known to be at greater risk of experiencing health 

disparities. The identification of clinical predictors of major adverse CV events (MACE) in these 

populations is a necessary step towards design tailored and equitable sleep-promoting interventions 

towards improved CV health. 

Efforts supporting the integration and availability of electronic health record (EHR) data linked 

with relevant social risk information is essential to better characterize the effects of health 

disparities. Towards that goal, initiatives such as the Accelerating Data Value Across a National 

Community Health Center Network (ADVANCE) Clinical Research Network (CRN) led by the 

OCHIN network of community health organizations enable such studies17, with a great potential to 

inform public health. As such, the current study leveraged data from the ADVANCE CRN and 

demonstrated an approach to dissect the heterogeneity of geographically informed social risk factors 

by applying clustering techniques and identifying social risk factor clusters. This data-driven 

approach supports the identification of population subgroups experiencing similar levels of social 

exposures and can offer an exploratory perspective on the impact of socio-environmental burden on 

health. We further assessed the association between social risk factors clusters and evidence of OSA 

diagnosis. Next, by employing a robust, end-to-end, and interpretable automated machine learning 

(ML) pipeline, we assessed clinical predictors of 5-year incidence of new onset MACE among

individuals with OSA belonging to different clusters. We hypothesized that 1) individuals

experiencing higher social burden were less likely to have received a diagnosis of OSA; and 2)

clinical predictors of incident MACE varied across social risk clusters, likely reflecting different

pathways towards CV risk depending on socio-environmental exposure.

2. Methods

2.1.  Study Design and Population 

This is a retrospective clinical cohort study of patients at risk for sleep disorders that were part of 

the ADVANCE CRN with available geographically informed social risk factor data ascertained 

between 2012 and 2021. Data was sourced from the OCHIN Epic EHR system. Data is 

representative of outpatient community-based health care organizations delivering high-quality 

primary care services for communities impacted by health disparities in the U.S. Clinical institutions 
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include Federally Qualified Health Centers or other federally supported community health centers. 

The ADVANCE CRN is part of PCORnet®, the National Patient-Centered Clinical Research 

Network, thus data is organized according to the PCORnet® Common Data Model. Access was 

requested and facilitated by the Artificial Intelligence/Machine Learning Consortium to Advance 

Health Equity and Researcher Diversity (AIM-AHEAD) program. The study has been approved by 

Institutional Review Boards from the University of Kansas Medical Center and Harvard Medical 

School with non-human subjects determination, as only de-identified data was made available.  

Out of a dataset of over 3.2 million adults (age ≥18 years), we identified a cohort with at least 

one year of interactions with community health centers, a minimum of 3 encounters, and non-

missing geographically informed social risk factors. Among those patients, we further created a 

subset of those with evidence of OSA and at least 5 years of interaction with the community health 

centers and without prior evidence of CV diseases to determine clinical predictors of incident 

MACE. 

2.2.  Geographically informed social risk factors 

Geographically linked neighborhood-level indicators at census tract and/or ZCTA levels18 were 

made available through OCHIN as part of the ADVANCE CRN data warehouse. Linkage was 

performed by matching participant’s address ZIP code with publicly available data sources from the 

U.S. Census Bureau and American Community Survey, and used to impute the following area-level 

social indicators: income inequality coefficient, or Gini coefficient, a measure ranging from 0 

(perfectly equal geographical region where all income is equally shared) and 1 (perfectly unequal 

society where all income is earned by 1 individual)19,20; median household income (in U.S. dollars); 

percent of adults age >25 years who graduated from college; percent of total population in poverty 

(<100% federal poverty level [FPL]); and rate of unemployment among population age ≥16 years. 

These indicators were categorized into quartiles prior to downstream analyses.  

2.3.  Computable phenotypes for OSA 

A validated EHR algorithm was used to identify individuals with evidence of OSA, as described by 

Keenan et al. 202021. Individuals with 2 or more International Classification of Diseases (ICD)-9 or 

10 codes for OSA at different dates were classified as having OSA (ICD-9: 327.20, 327.23, 327.29, 

780.51, 780.53, 780.57; ICD-10: G47.30, G47.33, G47.39). This algorithm presented optimal 

predictive performance across six health systems in the U.S., with overall positive predictive value 

(95% CI) of 97.1% (95.6, 98.2) and negative predictive value of 95.5% (93.5, 97.0)21. Individuals 

not meeting these criteria were defined as not having evidence of OSA diagnosis. 

2.4.  Phecode mapping 

The phecode framework22 is a high-throughput EHR phenotyping method with the goal of 

representing a wide range of clinical phenotypes. Structured as an ontology-based classification 

system, phecodes combine groups of ICD codes into clinically relevant groups, thus minimizing the 

dimensionality of clinical diagnosis. In this study, we focused on phecodes observed in at least 1,000 
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participants in our final cohort, resulting in a total of 932 phecodes included as predictors in our ML 

analyses.  Phecode maps can be queried elsewhere (https://www.phewascatalog.org/phecodes). 

2.5.  Study outcomes 

We report the results of two analyses. Our primary analysis consisted of investigating the association 

between social risk factors clusters and evidence of OSA. Thus, our outcome was prevalence of 

OSA. Secondly, we assessed clinical predictors of 5-year incidence of MACE, defined as a 

composite of myocardial infarction, coronary artery disease, cerebrovascular disease, heart failure 

or stroke, using validated computable phenotypes as previously described23-29. A list of ICD and 

Current Procedural Terminology codes used to define these conditions are available elsewhere 

(https://raw.githubusercontent.com/RWD2E/phecdm/main/res/valueset_curated/vs-osa-

comorb.json).  

2.6.  Statistical analyses 

All analyses were conducted within the AIM-AHEAD Service Workbench cloud infrastructure. 

Initial cohort characterization was performed through a data request with OCHIN. A database 

schema was created in Microsoft SQL Server and access was provided to the author. A series of 

tables resulting from this database schema were generated to capture the following data domains: 

patient demographics, social risk factors, diagnosis, and procedures. Queries used to create analysis-

ready can be found elsewhere (https://github.com/mazzottidr/AIMAHEAD_Fellowship_Mazzotti). 

First, we determined univariate associations between OSA and sociodemographic characteristics 

(sex, race, ethnicity, gender identity, current FPL, marital status, homeless status, and sexual 

orientation), as well as between OSA and quartiles of geographically informed social risk factors 

(Gini coefficient, median household income, percent of college graduates; percent of total 

population in poverty; and rate of unemployment) using chi-squared tests or t tests. Next, we used 

latent class analysis (LCA) to identify clusters of social risk factors using quartiles of the 

geographically informed social risk factors listed above. Due to the large computational 

requirements of performing LCA on large datasets, we assessed the optimal number of clusters by 

sub-setting the data into 10 random subsamples of N=5,000 participants and performing LCA using 

1 through 5 clusters. We used the Bayesian Information Criterion and the elbow method to 

determine the optimal number of clusters. Based on these analyses, we determined that a 3-cluster 

solution was as the optimal in all 10 iterations. We further re-ran LCA in the complete dataset using 

only this solution, setting the maximum number of iterations through each estimation algorithm 

(maxiter) as 1,000 and the number of times to estimate the model with different class-conditional 

response probabilities (nrep) as 25, with default parameters otherwise. We used the poLCA package 

in R30. Cross-sectional associations between social risk factor clusters and OSA were assessed using 

chi-squared test and unadjusted and adjusted logistic regression. Covariates included age, sex, 

language, race, marital status, ethnicity, and urban/rural status. 

We proceeded to determine whether different social risk factor clusters would prioritize different 

clinical risk factors towards predicting MACE risk among a cohort of individuals with evidence of 

OSA. For this analysis, we included only participants with evidence of OSA, at least 5 years of 
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follow-up data, to allow for ascertainment of MACE incidence. Phecode feature sets were used as 

predictors of 5-year incidence of MACE (binary outcome) using STREAMLINE, an end-to-end 

rigorous and interpretable auto-ML pipeline (https://github.com/UrbsLab/STREAMLINE)31,32, 

which has been implemented in a SageMaker instance of the AIM-AHEAD Service Workbench. 

Data were split into training/testing (90%) and validation (10%), maintaining proportions for both 

the outcome and social risk factor clusters. For each cluster, we optimized four different ML 

methods (logistic regression [LR], random forest [RF], Light Gradient Boost Machine [LightGBM], 

and Extreme Gradient Boosting [XGB]), as well as evaluated models with area under the receiver 

operating characteristics curve (ROC-AUC) and area under the precision-recall curve (PRC-AUC) 

using a 3-fold cross-validation design. Feature importance scores were determined, along with social 

risk factor cluster-specific final models for independent validation. The top performing features in 

each subgroup were then selected and compared across clusters. Analyses were conducted using R 

(v 4.1.3) and Python (v 3.10.8). 

3. Results

3.1.  Sample characterization 

In our initial analysis focused on assessing the association between social risk factors and prevalence 

of sleep disorders, our primary cohort consisted of 1,476,358 adults with encounters in community 

health centers across the U.S. Figure 1 represent the study flowchart. 

Figure 1. Study flowchart representing sample sizes for each included study cohort. 

Among those, 63.2% were female, 69.9% spoke English as the primary language, 67.4% were 

White, 20.9% were Black, 5.1% were Asian, 67.8% had a current FPL <100%, 3.3% reported being 

homeless and 16.5% lived in rural areas. These characteristics highlight the sociodemographic 

diversity of the included cohort. Table 1 provides descriptive statistics of the overall sample, as well 

as by evidence of OSA status. Individuals with evidence of an OSA diagnosis represented 2.3% of 

the included cohort (N=33,064), and univariate analyses suggest they were older, more likely to be 

males and with male gender identity, more likely to speak English as primary language, more likely 

to be White, less likely among those who were single, less likely among those with current FPL 
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<100%, less likely to be Hispanic or Latino, less likely among those reporting homelessness, more 

likely among those reporting heterosexual orientation, and more likely among those living in rural 

areas. Geographically informed social risk factors mostly differ between those with and without 

evidence of OSA, suggesting that those with a diagnosis are more likely to live in areas with lower 

social risk (Table 1). 

Table 1. Sample characteristics, overall and stratified by evidence of obstructive sleep apnea (OSA). 

Variable Category 
Overall 

(N=1,476,358) 

Evidence of OSA 

pa No 

(N=1,443,294) 

Yes 

(N=33,064) 

Age, years 44.3 (15.9) 44.1 (15.9) 52.1 (12.8) <0.001 

Sex 
Female 932,903 (63.2) 917,179 (63.6) 15,724 (47.6) <0.001 

Male 543,036 (36.8) 525,703 (36.4) 17,333 (52.4) 

Primary 

language 

English 1,031,528 (69.9) 1,002,947 (69.5) 28,581 (86.4) <0.001 

Spanish 354,107 (24.0) 350,674 (24.3) 3433 (10.4) 

Other 90,723 (6.1) 89,673 (6.2) 1,050 (3.2) 

Race 

White 993,964 (67.4) 969,574 (67.3) 24,390 (73.9) <0.001 

American Indian or Alaska Native 12,696 (0.9) 12,335 (0.9) 361 (1.1) 

Asian 75,552 (5.1) 74,646 (5.2) 906 (2.7) 

Black or African American 307,628 (20.9) 301,653 (20.9) 5,975 (18.1) 

Multiple Race 20,259 (1.4) 19,774 (1.4) 485 (1.5) 

Native Hawaiian or Other Pacific Islander 9,899 (0.7) 9,622 (0.7) 277 (0.8) 

Refuse to answer 54,396 (3.7) 53,771 (3.7) 625 (1.9) 

Marital 

status 

Current Partnership 363,381 (24.6) 355,745 (24.6) 7,636 (23.1) <0.001 

Divorced/Separated 86,176 (5.8) 83,422 (5.8) 2,754 (8.3) 

Single 496,312 (33.6) 488,703 (33.9) 7,609 (23.0) 

Unknown 497,609 (33.7) 483,544 (33.5) 14,065 (42.5) 

Widowed 32,880 (2.2) 31,880 (2.2) 1,000 (3.0) 

Current FPL 

101-150 % 217,701 (14.7) 212,929 (14.8) 4,772 (14.4) <0.001 

≤100 % 1,000,448 (67.8) 979,666 (67.9) 20,782 (62.9) 

151-200 % 94,042 (6.4) 91,871 (6.4) 2,171 (6.6) 

>200 % 164,167 (11.1) 158,828 (11.0) 5,339 (16.1) 

Ethnicity 
Not Hispanic or Latino 912,928 (62.8) 886,753 (62.4) 26,175 (80.5) <0.001 

Hispanic or Latino 540,075 (37.2) 533,727 (37.6) 6,348 (19.5) 

Gender 

identity 

Female 535,485 (36.3) 523,697 (36.3) 11,788 (35.7) <0.001 

Male 316,468 (21.4) 304,107 (21.1) 12,361 (37.4) 

Transgender, Gender Queer, Other 19,768 (1.3) 19,591 (1.4) 177 (0.5) 

Unknown 604,637 (41.0) 595,899 (41.3) 8,738 (26.4) 

Homelessness 

status 

No/Unknown 1,427,117 (96.7) 1,394,342 (96.6) 32,775 (99.1) <0.001 

Yes 49,241 (3.3) 48,952 (3.4) 289 (0.9) 

Sexual 

orientation 

Heterosexual 731,141 (49.5) 710,476 (49.2) 20,665 (62.5) <0.001 

Homosexual 24,422 (1.7) 23,584 (1.6) 838 (2.5) 

Bisexual 15,222 (1.0) 14,837 (1.0) 385 (1.2) 

Other 6,006 (0.4) 5,856 (0.4) 150 (0.5) 

Unknown 699,567 (47.4) 688,541 (47.7) 11,026 (33.3) 

Rural/urban 

status 

Urban 1,233,127 (83.5) 1,209,391 (83.8) 23,736 (71.8) <0.001 

Rural 243,231 (16.5) 233,903 (16.2) 9,328 (28.2) 

Geographically informed indicators 

Unemployment rate, % 7.33% (3.41) 7.33% (3.42) 7.14% (3.29) <0.001 

Median household income, U.S. dollars $53,994 (20,242) $53,968.92 (20,269) $55,086 (19,020) <0.001 

% of college graduates 26.91% (15.06) 26.91% (15.07) 26.86% (14.63) 0.518 

Gini coefficient 0.45 (0.05) 0.45 (0.05) 0.45 (0.05) <0.001 

% of population below FPL 18.89 (9.37) 18.92 (9.38) 17.68 (8.68) <0.001 
a Chi-squared tests or t-tests. Categorical variables are represented as N (%) and continuous variable as mean (SD). 

Abbreviations: OSA, obstructive sleep apnea; FPL, Federal Poverty Level; SD: standard deviation. 
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3.2.  Clusters of social risk factors 

Results of LCA revealed three major social risk factor clusters: lowest (N=489,191; 35.7%), average 

(N= 642,973; 43.6%) and highest (N=335,194; 22.7%) social burden. Table 2 describes the 

differences between each geographically informed social risk factor and the 3-cluster solution used 

to inform the names of each cluster. The highest social burden cluster had the greatest proportion of 

the highest quartiles of unemployment rates, Gini coefficient, and proportion of individuals living 

below poverty level, and the lowest quartiles of median household income and proportion of 

individuals that are college graduates. 

Table 2. Association between social risk factor quartiles and identified social risk clusters. 

Social risk factor quartiles Category 

Lowest Social 

Burden 

(35.7%) 

Average Social 

Burden 

(43.6%) 

Highest Social 

Burden 

(22.7%) 

pa 

Unemployment rate Q1 [<5.1%] 299,777 (60.2) 61,207 (9.5) 8,503 (2.5) <0.001 

Q2 [5.1-6.6%] 139,264 (28.0) 202,799 (31.5) 23,253 (6.9) 

Q3 [6.6-8.9%] 51,053 (10.2) 267,651 (41.6) 49,361 (14.7) 

Q4 [≥8.9%] 8,097 (1.6) 111,316 (17.3) 254,077 (75.8) 

Median household income Q1 [<40.7k] 424 (0.1) 56,959 (8.9) 313,600 (93.6) <0.001 

Q2 [40.7-50.0k] 1,856 (0.4) 343,123 (53.4) 21,594 (6.4) 

Q3 [50.0-63.8k] 135,449 (27.2) 230,266 (35.8) <11 

Q4 [≥63.8k] 360,462 (72.4) 12,625 (2.0) <11 

% of college graduates Q1 [<16.7%] 17,317 (3.5) 144,164 (22.4) 205,989 (61.5) <0.001 

Q2 [16.7-23.1%] 46,037 (9.2) 247,449 (38.5) 74,078 (22.1) 

Q3 [23.1-33.5%] 146,377 (29.4) 179,683 (27.9) 39,874 (11.9) 

Q4 [≥33.5%] 288,460 (57.9) 71,677 (11.1) 15,253 (4.6) 

Gini coefficient Q1 [<0.42] 204,591 (41.1) 140,407 (21.8) 20,896 (6.2) <0.001 

Q2 [0.42-0.45] 104,607 (21.0) 199,895 (31.1) 63,231 (18.9) 

Q3 [0.45-0.48] 93,785 (18.8) 169,999 (26.4) 104,347 (31.1) 

Q4 [≥0.48] 95,208 (19.1) 132,672 (20.6) 146,720 (43.8) 

% below poverty level Q1 [<12.1%] 355,133 (71.3) 1,4870 (2.3) 1,067 (0.3) <0.001 

Q2 [12.1-17.6%] 130,118 (26.1) 236,982 (36.9) <11 

Q3 [17.6-23.7%] 4,322 (0.9) 349,902 (54.4) 14,214 (4.2) 

Q4 [≥23.7%] 8,618 (1.7) 41,219 (6.4) 319,913 (95.4) 
a Chi-squared tests. Categorical variables are represented as N (%). 

3.3.  Associations between social risk factors clusters and OSA 

We proceeded to determine the association between social risk factors clusters and evidence of OSA. 

Univariate analysis indicated that individuals with evidence of OSA were less likely to belong to 

the highest social burden cluster (16.8%) when compared to those without evidence of OSA (22.8%, 

p<0.001). On the other hand, those with evidence of OSA were more likely to belong to both the 

lowest and average social burden clusters when compared to those without evidence of OSA (34.9% 

vs. 33.7% and 48.3% vs. 43.4%, respectively, both p<0.001). Logistic regression adjusted for 

relevant confounders, including individual level social risk factors, indicated that individuals 

belonging to the lowest social burden cluster were less likely to have received a diagnosis of OSA 

(OR [95%CI] = 0.85 [0.82-0.88]) when compared to those belonging to the highest social burden 

cluster. On the other hand, individuals belonging to the average social risk burden were slightly 

more likely to have received a diagnosis of OSA (1.03 [1.01-1.06]) compared to those in the highest 
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social burden cluster. Results suggest important socio-environmental contributions to potential 

disparities in the diagnosis of OSA in community health centers. 

3.4.  MACE prediction among individuals with OSA 

Next, we proceeded to understand the clinical factors contributing to increased CV risk among 

individuals with OSA in the included sample, without taking into consideration their social risk 

cluster. A cohort of 4,045 individuals with OSA, without prior evidence of MACE and with at least 

5 years of follow-up since their first OSA diagnosis was included in this analysis. Among those, 

327 (8.1%) individuals had evidence of a MACE within the 5-year follow-up. 

Using a robust ML pipeline, we proceeded to create our training (90%) and testing (10%) sets, 

maintaining the proportions of incident MACE cases and social risk clusters. Our training dataset 

consisted of 3,641 individuals (294 [8.1%] cases) and our testing dataset consisted of 404 

individuals (33 [8.2%] cases). We determined these training/testing splits to allow greater 

representation of the dataset during training, due to the limited sample size of the cohort. 

First, we assessed the performance of clinical risk factors (represented as phecodes) to predict 

incident MACE in the training and testing datasets, regardless of social risk cluster membership, 

using four different ML methods (LR, RF, LightGBM, and XGB). Figure 2 summarizes the 

prediction performances in terms of ROC-AUC and PRC-AUC across the four methods. While 

XGB demonstrated the best performance in the training dataset for both performance metrics (mean 

[SD across cross-validation] ROC-AUC = 0.67 [0.03]; PRC-AUC = 0.14 [0.02]), LR was the best 

performing method in the testing dataset (ROC-AUC = 0.70 [0.03]; PRC-AUC = 0.19 [0.02]). 
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Figure 2. Summary of incident MACE prediction performance and feature importance (top 10 features). 

Inspection of normalized and balanced accuracy-weighted feature importance plots (Figure 2) 

indicates that age was the most important predictor across all methods, except for LR. For this 

method, the most important feature was phecode 416 (cardiomegaly). Other relevant features 

listed among the top 10 included phecodes 411.4 (coronary atherosclerosis), 401.1 (essential 

hypertension), 428.1 (congestive heart failure), 496 (chronic airway obstruction), 586 (other 

disorders of the kidney and ureters), 681 (superficial cellulitis and abscess), 573.9 (abnormal 

serum enzyme levels) and ethnicity. 

3.5.  MACE prediction after social risk factor cluster stratification 

Finally, we proceeded to explore how these models would perform within specific subgroups 

according to the assigned social risk factor clusters, and whether top clinical predictors would be 

similar or different across clusters. For this analysis we trained and evaluated ML models using the 

same methods described above, but within each social risk factor cluster. Training and testing 

dataset sample sizes for each cluster were as follows: lowest social burden cluster (N train=1,136; N 

test = 126), average social burden cluster (N train =1,791; N test = 199), and highest social burden cluster 

(N train = 467; N test = 52). 
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Table 3 summarizes the results of the predictive performance in the testing dataset from 

models trained and evaluated within each social risk factor cluster separately. According to the 

ROC-AUC, within participants assigned to the lowest social burden clusters, LR was the best 

performing method, while RF performed the best in both the average and highest social burden 

clusters. According to the PRC-AUC, within participants assigned to the lowest social burden 

clusters, LR was also the best performing method, while XGB performed the best in both the 

average and highest social burden clusters. 

Table 3. Summary of prediction performance metrics in the testing datasets using models trained within social risk 

factor clusters. 

Method Metric 

Cluster 

Lowest social 

burden 

Average social 

burden 

Highest social 

burden 

XGB 
ROC-AUC 0.500 0.617 0.564 

PRC-AUC 0.117 0.133 0.189 

LightGBM 
ROC-AUC 0.616 0.606 0.504 

PRC-AUC 0.126 0.098 0.177 

LR 
ROC-AUC 0.689 0.631 0.522 

PRC-AUC 0.213 0.114 0.103 

RF 
ROC-AUC 0.634 0.634 0.628 

PRC-AUC 0.163 0.127 0.141 

Abbreviations: XGB, Extreme Gradient Boosting; LightGBM, Light Gradient Boost Machine; LR, logistic regression; RF, 

random forest; ROC-AUC, area under the receiver operating characteristics curve; ROC-PRC, area under the precision-

recall curve. 

We then inspected differences in the normalized and balanced accuracy-weighted feature 

importance plots (Figure 3) across the models and social risk factor clusters to investigate whether 

clinical risk factors that predict incident MACE would be different depending on individuals’ 

socio-economic exposures. Results suggest that while age at diagnosis of OSA was an important 

predictor across all social risk factor clusters, being listed among the top 10 features in all groups, 

there were important differences in the comorbidity profile linked to incident MACE within each 

group. For example, among those with lowest social burden, some more conventional CV 

comorbidities or risk factors were observed, such as essential hypertension (401.1), nonspecific 

chest pain (418) and both type 1 and 2 diabetes (250.1 and 250.2). However, among those with 

highest social burden, top predictors included symptoms such as malaise and fatigue (798), pain in 

joint (745), and dizziness and giddiness (light-headedness and vertigo, 386.9), in addition to a 

more metabolic comorbidity profile (244.4, hypothyroidism and 250.2, type 2 diabetes). Among 

those with average social burden, features included both conventional ones (401.1, essential 

hypertension and 416, cardiomegaly) as well as other infectious and parasitic diseases (136) and 

Lyme disease (130.1). Anxiety disorder (300.1) was also observed as an important predictor 

among  those with lowest and average social burden. 
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Figure 3. Top feature important comparison across models evaluated within different social risk factor 

clusters. 

4. Discussion

Our main findings highlight important social disparities related to the identification and diagnosis 

of OSA in community health centers, as well as important differences in clinical factors that 

contributed to the prediction of incident CV diseases among participants with a diagnosis of OSA. 

We applied an innovative approach to identify social risk factor clusters derived from relevant 

geographically informed social indicators estimated from national surveys. We identified three 

clusters (lowest, average, and highest social burden), consistent with observed individual-level 

sociodemographic characteristics. Individuals belonging to the highest social burden cluster were 

less likely to have received a diagnosis of OSA, even after adjusting for relevant confounders such 

as sex, race, and ethnicity – factors that have been consistently demonstrated to affect health 

disparities within sleep disorders1-8. Our study also demonstrated that a LR-based incident MACE 

prediction model trained on hundreds of clinical features (i.e., phecodes) had a reasonable, yet not 

optimal performance in testing sets. Nevertheless, performance varied across subgroups defined by 

social risk factor clusters, as well as the top features contributing to those predictions, suggesting 

different pathways towards CV risk depending on socio-environmental exposure. 

The study provides novel insights about the clinical prevalence and recognition of OSA within 

community health centers in a diverse population at greater social burden. Our dataset was 

composed of a large proportion of underrepresented minorities according to sociodemographic 

characteristics, including race, ethnicity, gender and sexual identity. More importantly, 67.8% of 

the cohort were below the Federal poverty level. In this context, the observed clinical prevalence of 

OSA (2.3%) is lower than other clinical cohorts defined using EHR-based methods, such as within 

the National COVID Cohort Collaborative (3.9%), comprised of a sample of individuals that have 
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been tested positively for SARS-CoV-2 through encounters within academic health systems33. The 

prevalence is even lower than the expected population prevalence of OSA, estimated to affect nearly 

1 billion people worldwide12. It is well-established that OSA is underdiagnosed34,35, and our analysis 

in community health centers identified even further differences. Clustering of geographically 

informed social indicators revealed that individuals at greater social burden (i.e., highest social 

burden cluster) were significantly less likely to have received a diagnosis of OSA, even after 

adjusting for other established individual-level social risk factors. When assessing individual-level 

sociodemographic characteristics, those receiving a diagnosis of OSA were more likely to speak 

English as primary language, more likely to be White, less likely to be among those with current 

FPL <100%, less likely to be Hispanic or Latino, less likely to report homelessness, although more 

likely to live in rural areas. These findings suggest important socio-environmental contributions to 

potential disparities in the diagnosis of OSA in community health centers and that underrepresented 

minorities may not be receiving adequate sleep care. Thus, screening of sleep disorders particularly 

within this subgroup at greater risk is necessary. While it might seem impractical to offer screening 

and treatment of chronic sleep disorders such as OSA in community health centers, preventing high 

risk individuals from obtaining access to quality sleep health care might exacerbate disparities 

related to metabolic, neurological, and psychiatric conditions, all of which have been associated 

with OSA36. 

In this context, CV diseases are particularly relevant due to the worsening of CV disparities over 

several decades, despite efforts of addressing health needs of vulnerable populations37. Due to the 

major epidemiological and experimental evidence supporting the role of OSA towards increasing 

CV risk13-16, understanding and addressing these needs are of high importance. Towards this goal, 

we assessed whether an incident MACE prediction model trained on a broad range of clinical 

features within individuals with OSA had adequate performance and could be used to prioritize 

clinical profiles based on most relevant features. Despite our best model, a LR with a ROC-AUC of 

0.70 and a PRC-AUC of 0.19, not being necessarily optimal for deployment, it helped us identify 

important features contributing to the prediction, many of them with established associations with 

OSA. For example, in our overall analysis, top features included cardiomegaly, atherosclerosis, 

essential hypertension, congestive heart failure, chronic airway obstruction, disorders of the kidney 

and ureters, and abnormal serum enzyme levels. Many of these features are established CV risk 

factors, supporting internal validity of our approach. More importantly, therapies focused on 

mitigating the effects of OSA have been demonstrated to improve some of these risk factors38. 

When assessing the prediction performance of models across strata of social risk factor clusters, 

we continued to identify similar, although slightly lower performance across groups with testing 

ROC-AUC ranging from 0.63 to 0.69 and PRC-AUC ranging from 0.13 to 0.21 for the best models. 

This is likely explained by the smaller sample size used for training in the stratified analyses, 

preventing models from learning relationships between clinical features and outcome. Some key 

clinical factors contributing to these predictions are observed across all social risk factor clusters, 

such as age at OSA diagnosis, cardiometabolic conditions (e.g., type 2 diabetes, hypertension), and 

anxiety disorders. However, among those with highest social burden, top predictors included 

symptom-related factors such as malaise and fatigue, pain in joint, and light-headedness and vertigo, 

while among those with average social burden, features included infectious and parasitic diseases. 

These presentations might reflect primary reasons or exposure to different healthcare specialists. In 

this context, the study provided a systematic data driven approach to identify these factors, where 
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future studies could further explore, under a more hypothesis-driven methodology whether these 

conditions could be suggestive of higher CV risk within vulnerable populations. 

Our study has several strengths, such as providing an analysis in a large, racial, ethnic, and 

socioeconomically diverse clinical cohort of individuals observed in community health centers, a 

target population often neglected from epidemiological and experimental studies. In addition, we 

use a robust ML pipeline comparing, in a systematic way, different sets of ML methods and features 

towards understanding clinical factors of incident CV diseases. However, our study also present 

important limitations that should be considered when interpreting the findings. Access to OSA 

therapies, such as continuous positive airway pressure or mandibular advancement devices are likely 

not offered by this care modality and therefore not necessarily recorded in the ADVANCE EHR 

data warehouse, thus they could not be considered as confounders. More granular information about 

severity of OSA based on the apnea-hypopnea index or other metrics was not available, as it required 

parsing of clinical sleep study reports. Similarly, phecodes are not necessarily always precise, 

granular measures of diagnoses and may lack sensitivity and specificity of validated computable 

phenotypes. However, as part of a data-driven EHR-wide analysis, they may offer an initial set of 

hypotheses that could be assessed with more robust phenotypes in future investigations. Despite our 

observed signals, incidence rates of MACE were relatively low, possibly due to the relative short, 

5-year follow-up time, resulting in a very imbalanced classification problem. However, longer

follow-up windows would substantially reduce sample size and was not a feasible alternative.

In conclusion, this study leveraged heterogeneous EHR data from community health centers in 

the United States and described sociodemographic and geographically informed social disparities 

as they relate to diagnosis of OSA. Prediction models of incident MACE among individuals 

experiencing OSA also disparities in across clinical predictors of CV diseases. Thus, tailored 

interventions geared toward minimizing these disparities are warranted. 
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