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Heart failure (HF) is one of the most common, complex, heterogeneous diseases in the world, with
over 1-3% of the global population living with the condition. Progression of HF can be tracked via
MRI measures of structural and functional changes to the heart, namely left ventricle (LV),
including ejection fraction, mass, end-diastolic volume, and LV end-systolic volume. Moreover,
while genome-wide association studies (GWAS) have been a useful tool to identify candidate
variants involved in HF risk, they lack crucial tissue-specific and mechanistic information which
can be gained from incorporating additional data modalities. This study addresses this gap by
incorporating transcriptome-wide and proteome-wide association studies (TWAS and PWAS) to
gain insights into genetically-regulated changes in gene expression and protein abundance in
precursors to HF measured using MRI-derived cardiac measures as well as full-stage all-cause HF.
We identified several gene and protein overlaps between LV ejection fraction and end-systolic
volume measures. Many of the overlaps identified in MRI-derived measurements through TWAS
and PWAS appear to be shared with all-cause HF. We implicate many putative pathways relevant in
HF associated with these genes and proteins via gene-set enrichment and protein-protein interaction
network approaches. The results of this study (1) highlight the benefit of using multi-omics to
better understand genetics and (2) provide novel insights as to how changes in heart structure and
function may relate to HF.
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1. Introduction

1.1.  Heart failure has a high disease burden.

Heart failure (HF) carries one of the highest disease burdens in the world, with 1-3% of the global
population estimated to be living with HF. This includes 6.7 million people in the United States
(US) alone, and does not include the 33% of the US population at-risk of developing HF1. The
etiology of HF is heterogeneous and complex, but has ultimately been defined as a clinical
syndrome with symptoms and signs caused by structural and functional cardiac abnormalities2. Its
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risk is promoted by increasing age and by the presence of comorbidities such as myocardial
infarction, diabetes, hypertension, obesity, arrhythmias, infiltrative and inflammatory disorders,
and exposure to drugs or environmental toxins3–5. Despite the complexity of HF, it has been
demonstrated that risk is impacted by genetic predisposition to some degree6. While an exact
consensus of heritability for HF has not been reached, some have estimated that the heritability of
HF is around 26%7.

The overall progression of HF can be broken up into four stages:
Stage A: risk of HF but patients have no symptoms or structural heart changes
Stage B: no symptoms of HF or asymptomatic but patients do have structural heart
changes
Stage C: patients experiencing symptoms of HF
Stage D: advanced heart failure requiring specialized interventions8,9.

As noted in Stage A and B, HF is often preceded by a phase of undetected progression,
highlighting the need for better insight into the changes, such as structural heart changes9,10. These
changes often appear specifically at the left ventricle (LV), and include decreased left ventricular
ejection fraction (LVEF), LV dilation and/or hypertrophy, and valvular disease in which the heart
cannot pump as effectively, losing function. LV mass (LVM) has been shown to be an independent
predictor of HF, with risk for HF increasing by 1% for every 1% increase in excess LV mass11.
Likewise, LVEF, which measures LV contractile function (the percentage of blood leaving the
heart with each contraction) has been shown to be associated with HF prognosis12,13. Abnormal
measurements of several of these parameters measuring both structural and functional changes
together are reliable markers of cardiovascular risk and eventual HF diagnosis.

To quantify changes in the volume of blood in the heart before and after contraction, we can
use LV end-diastolic volume (LVEDV) and LV end-systolic volume (LVESV) respectively.
Together these four measures of heart structure and function (LVM, LVEF, LVEDV, and LVESV)
can provide an overall characterization of progression towards potential HF and represent an
intermediate phenotype or endophenotype. Identifying overlaps in changes seen in both
intermediate MRI trait measures and HF could give us a better idea of vital aspects that lead
towards full, advanced HF.

1.2.  Using multi-omics to increase knowledge gained from GWAS.

Given the known genetic contribution to HF and the prevalence of patients with the disease, many
groups have performed genome-wide association studies (GWAS) to identify genetic variants
associated with HF14–21. While this approach allows us to gain valuable insights into potential
genetic variation that contributes to the disease, it still leaves a crucial gap in connecting how
these variants are actually resulting in mechanistic change, and in which specific tissues. This is
especially relevant in quantitative phenotypes, where GWAS is insufficient to capture the full
heterogeneity measured by the trait. Transcriptome-wide association studies (TWAS) use GWAS
summary statistics along with reference gene expression from specific tissues to predict how
genetic variants affect gene expression within those tissues. TWAS and PWAS also provide a
boost in overall statistical power, as they are less affected by multiple test corrections due to being
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a gene-based test of association22,23. These methods are also more portable than GWAS; they are
less impacted by population structure in datasets as they operate on a gene and protein level24.

In this study, we make use of TWAS and PWAS methods to investigate genetic-derived gene
and protein changes among cardiovascular related-tissues using the largest published GWAS
summary statistics of HF and MRI measures of LV structure and function to date25–27. Our goals
are: 1) to integrate multi-omics data in the form of reference gene expression and protein
expression datasets to identify novel HF and related trait associated genes, 2) to evaluate whether
TWAS and PWAS approaches uncover the same association signals or provide novel gene-based
associations, and 3) determine whether these genes associated with HF and related traits are part
of shared pathways and/or networks between traits. This study is also, to our knowledge, one of
the first times that both TWAS and PWAS have been performed simultaneously on quantitative
traits.

2.  Methods

Figure 1. Overview of study analysis to identify genes, proteins, and related interactions between MRI-derived
cardiac intermediate traits and heart failure GWAS. (UKBB: UK Biobank, LVM: Left ventricular mass,
LVEF: Left ventricular ejection fraction, LVEDV: Left ventricular end-diastolic volume, LVESV: Left

ventricular end-systolic volume, EA: European American, AA: African American)

2.1.  Cardiovascular data

2.1.1.  MRI traits

Of all cardiac chambers, dysfunction of the left ventricle is the most common structural
abnormality in HF cases. We chose four measurements taken from the left ventricle derived from
MRI imaging with previously published GWAS data to characterize potential associations with
HF: LVM indexed to body surface area, LVEDV, LVESV, and LVEF26,27. LVM measurements
were taken from Khurshid et al, and includes 43,230 samples (91% European ancestry) with MRI
imaging and genotype data from the UK Biobank26. LVEDV, LVESV, and LVEF association
studies were performed on 41,135 samples also from the UK Biobank with MRI imaging and
genotype data by Pirruccello et al27.
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2.1.2.  Heart failure (HF)

We identified the largest all-cause HF GWAS study to date including 207,346 non-overlapping
samples of cases and 2,151,210 controls meta-analyzed from HERMES, the Million Veterans
Project (MVP), FinnGen, Mount Sinai BioMe (BIOME), Global Biobank Meta-analysis Initiative
(GBMI), eMERGE, Geisinger DiscovEHR, and Penn Medicine BioBank (PMBB)25. This included
an overall sample of 81.1% European ancestry, 9.7% African American, 6.5% East Asian, and
2.6% Admixed American.

2.2.  Transcriptome-wide association study (TWAS)

To provide tissue-specific context to GWAS results from the selected MRI traits and HF studies
we conducted transcriptome-wide association studies (TWASs) using S-PrediXcan28 and
multivariate adaptive shrinkage (MASHR) eQTL models from the Genotype-Tissue Expression
(GTEx) Project v8, available in PredictDB29,30 GTEx eQTLs were derived from a sample group of
mostly European ancestry (84.6% European ancestry, 12.9% African American, 1.3% Asian and
1.1% unknown) that closely parallels the composition of the HF multi-ancestry cohort. Using this
reference, we imputed genetically regulated gene expression (GReX) for all genes in ten tissues
known to be relevant in the cardiovascular system and heart failure (aorta, coronary artery, tibial
artery, atrial appendage, left ventricle, whole blood, visceral adipose, subcutaneous adipose, liver,
and kidney)31–37. Associations for each of the intermediate MRI traits from the UK Biobank, as
well as multi-ancestry and EUR populations from all-cause HF were calculated independently for
each of these ten tissues. Significant genes were determined using a Bonferroni threshold of
(p<0.05/(# genes x 10 tissues tested) per trait. All code is available at
https://github.com/RitchieLab/HFmultiomics_PSB2025.

2.3.  Proteome-wide association study (PWAS)

We performed a proteome-wide association study (PWAS) using S-PrediXcan28 with the GWAS
summary statistics for MRI traits from UK Biobank and for the multi-ancestry and European
(EUR) population all-cause HF studies. PWAS identifies genetic associations that may influence
complex traits, such as all-cause HF and MRI traits, by regulating protein abundance in tissue38.
Blood plasma-derived protein quantitative trait loci (cis-pQTLs) from the Atherosclerosis Risk in
Communities (ARIC)39 study were used to construct the models. This large bi-ethnic study was
made up of 9,084 participants, consisting of 7,213 European Americans (EA) and 1,871 African
Americans (AA). S-PrediXCan PWAS EA and AA models were identified in PredictDB and were
constructed using ARIC consortium data by utilizing PEERS covariates, expression information
from eQTL associations, gene and SNP annotations40,41. PWAS was conducted on multi-ancestry
and EUR studies of all-cause HF, as well as on traits from UK Biobank with the intermediate MRI
traits using the EA cohort information, and additionally the AA cohort for the multi-ancestry HF
study. The resulting PWAS associations were assessed for statistical significance using a
Bonferroni significance threshold (p<0.05/# proteins tested) for each trait.
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2.4.  Network and pathway analyses

2.4.1.  Pathway enrichment analysis

Gene set enrichment was performed using EnrichR42,43 for the significant results from TWAS and
PWAS for each MRI trait and HF phenotype, respectively. Enrichment analysis explored the
specific pathways and processes associated with the statistically significant genes and proteins
from the TWAS and/or PWAS. Pathway results were annotated with KEGG 2021, Reactome 2022,
and Gene Ontology (GO) Biological Process 2023 pathways. The significant pathways were
identified as having Fisher's exact test p-value < 0.0538,44.

2.4.2.  Network analysis and identification of hub genes and proteins

The statistically significant genes and proteins identified via TWAS and PWAS were used to
construct a protein-protein interaction (PPI) network using the online Search Tool for the Retrieval
of Interacting Genes (STRING v11)45, where the number of interactions present was assessed for
significance. Network interactions were thresholded by a minimum confidence score of > 0.4, as
calculated by STRING45. The networks were then visualized using Cytoscape 3.10.246, and degree
centrality analysis was performed using the cytoHubba module to identify and visualize the hub
genes and proteins47,48.

2.4.3.  Classification of of sub-clusters

Additionally, the Molecular Complex Detection (MCODE)49 module in Cytoscape was used to
screen modules of the larger PPI networks and construct clusters by identifying densely-connected
regions of the network50. The networks were thresholded to have an MCODE degree cutoff of 3,
node density cutoff of 0.1, node score cutoff of 0.2, number of nodes > 347,51. Gene set enrichment
analysis using KEGG 202152–54, Reactome 202255,56, and Gene Ontology (GO) Biological Process
202357,58 of each cluster was then conducted using Metascape59, using the default parameters of
minimum overlap of 3, p-value cutoff of 0.01, and minimum enrichment score of 1.5.

3.  Results

3.1.  TWAS and PWAS Association Analyses

3.1.1 MRI trait gene and protein associations

After fine-mapping, 35 unique genes within ten tissues and three proteins from blood plasma
(SPON1, C2, PACAP) were significant for LVEF based on a Bonferroni threshold
(TWAS:p<3.814E-07, PWAS:3.75E-05) (Figure 2A). 16 of these genes were significant in three
or more tissues, and one gene, SPON1, replicated in both TWAS and PWAS for LVEF. 35 genes
and one protein (THBS4) appeared significantly associated with LVM measures
(TWAS:p<3.842E-07, PWAS:3.79E-05). Five of these significant genes (FKBP7, WNT3, HSPQ4,
PSMC3, and PRKRA) appeared in three or more tissues tested. Finally, amongst the ten tissues
tested, 33 genes and three proteins (ENG, QPCTL, SPON1) were significant for LVEDV
(TWAS:p<3.815E-07, PWAS:3.79E-05) and 48 genes along with four proteins (RAB5A, SRL,
PACAP, SPON1) for LVESV (TWAS:p<3.815E-07), protein:3.79E-05). SPON1 was also
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significantly associated with LVESV for both TWAS and PWAS. Figures for LVM, LVEDV,
LVESV are available in Supplemental Figure 1A-C. The full significant results of the TWAS and
PWAS for MRI traits are available in Supplemental Table 1 and 2.

Between MRI traits, several genes appeared significant between measures. Genes FKBP7,
PRKRA, and RP11-171I2.3 were associated with all four MRI-based traits in at least one tissue. 15
genes overlapped between LVEDV and LVESV, four genes were shared between LVEDV and
LVM, four between LVEDV and LVM, five genes between LVESV and LMV, and finally 30
genes between LVESV and LVEF. Amongst protein results, SPON1 was the only protein shared
between traits and was significantly associated with LVEF, LVEDV, and LVESV.
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Figure 2. Circos plots for A) MRI LV Ejection Fraction and B) HF - Multi-ancestry representing identified
associations through GWAS (black), TWAS (red), and PWAS (blue). The outermost track of annotations

depicts genes and proteins identified through TWAS (red) and PWAS (blue), or both analyses (purple), with the
asterisk denoting novel results not previously reported from the source GWAS, GWAS Catalog, or NCBI.

3.1.2 HF gene and protein associations

231 unique genes and 29 proteins significantly associated with HF in a multi-ancestry population
(TWAS:p<3.806E-07, PWAS:p<3.79E-05) (Figure 2B). Six genes replicated across genes and
proteins, including RARRES1, NCF1, AIDA, HLA-DQA2, PNKP, and NCR3. 185 of the total 231
associating genes were significant in at least one vascular tissue (heart atrial appendage, heart left
ventricle, tibial artery, coronary artery, whole blood). 90 genes were significant in at least one
vascular tissue and one peripheral tissue (liver, kidney, subcutaneous adipose, visceral adipose).
Of the ten tissues tested, heart atrial appendage and heart left ventricle tissues had the largest
number of genes significantly associating with HF. Genes CRIP3 and USP54 were significant in
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all ten tissues tested. Similar associations with HF were noted in the European population
(Supplemental Figure 1D).

3.2.  Network and Pathway analyses

3.2.1.  MRI trait gene-set enrichment

In order to identify the known biologically relevant pathways associated with the statistically
significant TWAS and PWAS genes for each phenotype, gene-set enrichment analysis was
performed using EnrichR for Reactome 2022, KEGG 2021, and Gene ontology (GO) 2023
pathways. Significant pathways were identified at a p-value < 0.05; the full set of significant
pathways for each phenotype are available in Supplemental Table 3. For LVEF, the most
significant pathway by p-value was positive regulation of actin filament bundle assembly (p =
4.23E-03), made up of genes PXN and MTSS1 (Figure 3A). Several pathways involved in kidney
development function were also identified to be significant, such as renal cell filtration
differentiation (p-value = 9.47E-03), and nephron tubule development (p = 9.47E-03).

LVM (Supplemental Figure 2A) was enriched for a variety of cell proliferation and
differentiation pathways such as positive regulation of endothelial cell proliferation (p = 1.11E-03)
and negative regulation of muscle cell differentiation (p = 4.54E-03), identifying the gene IGF2
and protein THBS4 as important. Similarly developmentally important cardiovascular pathways
were identified for the LVEDV (Supplemental Figure 2B), including embryonic hemopoiesis (p
= 2.43E-04), megakaryocyte differentiation (p = 4.211E-04), and cardiac atrium morphogenesis (p
= 4.73E-04). The most significant pathway for LVESV (Supplemental Figure 2C) was
modulation by host of symbiont process (p = 5.34E-03), in addition to developmental pathways -
glomerular epithelial cell differentiation (p = 1.29E-02), and renal filtration cell differentiation (p
= 1.29E-02).

Figure 3. Gene-set enrichment results of TWAS and PWAS significant hits for A) MRI LVEF and B)
multi-ancestry HF phenotypes.
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3.2.2.  HF gene-set enrichment

A variety of relevant gene-sets were found to have overrepresented pathways previously identified
as important in all-cause HF60. For the HF multi-ancestry cohort (Figure 3B), the most significant
pathways include sterol transport (p = 5.34E-07) and cholesterol metabolism (p = 2.84E-06),
which are known to be impacted in a variety of cardiovascular disease states, including heart
failure61,62. Similar pathways were enriched in the EUR population for HF (Supplemental Figure
2D). Genes implicated in these pathways include ABCG8, STARD3, ABCG5, NPC1, CAV1,
APOH, PCSK9, and CD36.

3.2.3.  PPI network analysis of MRI trait genes and proteins

To evaluate the association of candidate genes and proteins identified by TWAS and PWAS, PPI
networks were constructed for each MRI trait phenotype using the STRING database. The PPI
network for LVEF contained 32 nodes, 16 of which were connected, and 14 edges at a confidence
threshold of > 0.4, with a PPI enrichment p-value = 5.24E-07, indicating that there were
significantly more interactions observed than expected by random chance. The hub nodes
identified via the cytohubba plugin by degree centrality were FLNC, ALPK3, SPATA24, and
HSPB7 (Figure 4A). MCODE identified 1 cluster in the network, with nodes FLNC, HSPB7, and
ALPK3, at a score of 1.5, as computed by multiplying node density by the number of members.

The network for LVM (Supplemental Figure 3A) contained 10 nodes (3 connected) and 2
edges, all corresponding to hits from TWAS. The network had a PPI enrichment score of p =
0.303. The hub node identified was FKBP7, a protein which functions as a molecular chaperone to
accelerate protein folding. MCODE did not identify clusters in this network.

The network for LVESV (Supplemental Figure 3B) consisted of 45 nodes (19 connected) and
16 edges, with a PPI enrichment p-value = 3.14E-06. Similarly to LVEF, the genes FLNC, ALPK3,
HSPB7, and BHMG1 were identified as hub nodes. MCODE once again identified 1 cluster in the
network, with nodes FLNC, HSPB7, and ALPK3, at a score of 3.

The LVEDV network (Supplemental Figure 3C) contained 34 nodes (13 connected) and 11
edges. Cytohubba identified BHMG1 as a hub node. MCODE did not identify clusters in this
network. Metascape pathway enrichment of clusters for the MRI phenotypes did not yield
additional enriched terms; the full cluster and pathway enrichment results are available in
Supplemental Table 4.
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Figure 4. PPI networks constructed using TWAS and PWAS significant hits for A) MRI LVEF and B)
multi-ancestry HF phenotypes. Size of nodes denotes degree centrality, with largest nodes identified as hub

nodes.

3.2.4.  PPI network analysis of HF genes and proteins

The PPI network for the HF multi-ancestry cohort consisted of 234 nodes and 294 edges at the
medium confidence score > 0.4 in STRING, with an average local clustering coefficient of 0.377
(Figure 4B). STRING found that the network had a PPI enrichment p-value = 1.0E-16, suggesting
that the network had significantly more edges than expected by random chance. In Cytoscape, the
hub nodes identified by degree centrality were CAV1, ERBB2, TGFB1, and CD36. Additionally, 5
non-overlapping clusters were identified in MCODE, with a max cluster score of 4.889 and
minimum score of 3.0, where a higher score denotes a greater number of nodes in the cluster.
Metascape was used to evaluate pathways for the genes present in each cluster, identifying
pathways in sarcomere organization (LOG10P=-9.09), Hemostasis (LOG10P=-7.84),
VEGFA-VEGFR2 pathway (LOG10P=-7.65), and heart development (LOG10P=-3.14), among
several others. The PPI network for HF in the EUR population (Supplemental Figure 3D) yielded
similar findings.

Pacific Symposium on Biocomputing 2025

513



4.  Discussion

We performed the first ever intermediate cardiac imaging trait TWAS at the gene level and
first-ever protein imputation and largest for all-cause HF, followed by enriched gene sets and
constructed interaction networks to contextualize our findings. Current established
cardiomyopathy (CM) genes have been found studying familial forms of disease, however, here
we focused on identifying associations based on structural and functional cardiac changes and
expect to see differences. Overall we demonstrated (1) an increase in information gain using
TWAS and PWAS in addition to GWAS in connecting intermediate cardiac phenotypes and
full-stage HF, (2) the value in using quantitative intermediate measures for interpreting the
changes that occur during disease progression, and (3) how these intermediate measures may
relate to changes seen in full-stage HF.

4.1.  Information gain from multi-omics approaches

While GWAS has value in identifying singular variants associated with traits, variant results are
unable to give clues toward mechanistic effects as it relates to the traits of interest. Genes deemed
significant from GWAS are usually only identified based on their proximity to significant variants,
but we know that proximity actually is not always a good indicator of effect on gene expression
and often varies per tissue63,64. However, our results are derived from published variant to gene
expression values (eQTLs). Our TWAS showed an overall increase in the number of genes
associated for every MRI-trait tested compared to GWAS. For example, from Pirruccello et al., 19
genes were identified as proximal to significant variants from GWAS for LVEF. We replicated 8 of
those in our TWAS and PWAS, and also identified 29 additional genes and proteins (4 within
GWAS Catalog65 and NCBI66, 25 novel) that were significant in a tissue specific context (Figure
2A)27. This trend continued for LVEDV, LVESV, and LMV from Khurshid et al (Supplemental
Figures 1A-C)26. For all-cause multi-ancestry HF GWAS, we replicated 50 genes from the source
GWAS in our TWAS results. 199 genes and proteins were not identified in GWAS, indicating that
GWAS variants may not be affecting closest proximity genes. Of the remaining 199 genes and
proteins identified in our TWAS, 179 are considered novel associations and are not found in
previous HF GWAS within GWAS Catalog (Figure 2B).

Additionally, to our knowledge this is the first study looking at the protein level based on
quantitative cardiac traits, making all protein results novel. By adding proteins to genes in our
gene-protein networks, these results 1) give higher confidence associations to those replicating at
the gene and protein level, and 2) connect gene clusters with missing information. For example,
SPON1 replicated at the gene and protein level for LVEF and LVESV and has been implicated in
cardiomyopathies67–69, blood pressure70, cognitive decline71–73, cancers74,75, as well as EF in a recent
study76. NCF1, replicated at the gene and protein level for HF and does not appear to have
previously been associated with HF in literature, but has been reported for Williams Syndrome
which can cause structural vascular changes77. NCF1 also has ties to immune response and is a key
regulator of reactive oxygen species78,79. Other replicating proteins for HF (APOH, TNXB,
PCSK9, and RGMB), have previously been associated with HF16,80–82.

4.2.  Relationships between intermediate cardiac measures and HF

The four MRI derived cardiac measures explored in this study are often collectively used to mark
structural and functional changes in the heart, and are reliable indicators of HF risk and eventual
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diagnosis. Therefore the relationship between these measures as well as the overlap between each
and HF at the gene, protein, and pathway level is of interest.

Between the MRI cardiac measures we see overlap at the gene and protein level (Figure 2A
and Supplemental Figures 1A-C). Three genes, FKBP7, RP11-171I2.3, and PRKRA were
significant in at least one tissue for each of the four MRI cardiac traits. Both FKBP7 and PRKRA
have been discussed in relation to cardiac traits before. PRKRA has been implicated in studies
impacting heart structure, and while FKBP7 has been less discussed, was linked to atrial
fibrillation in one study83–87. PRKRA and FKBP7 are both involved in stress response and could be
indicative of problematic changes beginning to occur. It is worth noting that FKBP7, PRKRA, and
third gene (PLEKHA3, significant with LVM, LVEDV, and LVESV), all lie within a region of
chromosome 2 that also includes the gene TTN, which is well established heritable cause of dilated
cardiomyopathy, a leading cause of heart failure88–90.

Of the four traits LVEF and LVESV had the most overall overlaps, with 30 different genes and
one protein, SPON1 appearing for both traits. When we clustered the results, one PPI cluster for
LVEF is dominated by genes previously implicated with dilated cardiomyopathy and heart failure
risk (HSPB7, FLNC, ALPK3, CLCNKA) (Figure 4A), as well as links to the brain via WDR7391–97.
We also see a cluster composed of much of the same genes for LVESV, and overlapping enriched
pathways for cardiac cell development (ALPK3), and transepithelial chloride transport (CLCNKA).
Renal transport also appears as a significantly enriched pathway for LVEF as a result of CLCNKA,
as well as renal filtration cell differentiation and nephron tubule as top pathway results. Renal
impairment is common among HF patients and is documented to increase mortality risk98,99. The
significance of structural LV genes contributing to these pathways could indicate that these genes
impact both disorders, or that there may be some interplay between HF and renal conditions that
contribute to progression.

Within our multi-ancestry HF results there appears to be substantial overlap in the MRI
derived cardiac measures. 30 genes that appeared significant in one of the MRI cardiac traits also
appeared to be associated with all-cause HF. LVEF and LVESV had the largest number of
overlapping genes with the disease respectively (18 genes for LVEF and 18 genes for LVESV),
further supporting their use as HF indicators. AIDA was the top significant protein from blood
plasma, significant with both the European American and African American pQTL reference
panels (Supplemental Table 2), a gene previously discussed as part of inflammatory response that
also promotes atherosclerosis and coronary artery disease100. Overall, HF associated gene and
protein results tend to enrich lipid and specifically cholesterol related pathways (Figure 3B).
Nephron tubule development also appears as a top pathway for GF, implicating the kidneys again.
We did not see top CM genes such as MYBPC3, MYH7, MYL2/3, DSP, but these also were not
significant in our source GWASs and not surprising given that our studies were focused on cardiac
structure and functional changes rather than familial types. However, we did find some known CM
genes: FLNC (LVEF, LVESV, HF), PLN (LVEDV), and ACTIN2 (HF), as well as genes related to
known CM genes like TNNT2 (TNNT3 - HF) and TMEM43 (TMEM170A, TMEM241,
TMEM150A, TMEM245 - HF).

4.3.  Limitations and future directions

Limitations exist within this study. First, this analysis only encompasses the genetic factors of HF
and intermediate cardiac measures. Genetics play a significant role in the development of HF;
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however, it has been shown that environment and comorbidities play a large role in increasing risk
as well101,102. We did not consider social factors or health records of the patients used in the source
GWASs, and therefore may not have fully been able to characterize all potential sources of disease
progression. Future studies attempting to characterize or stratify individual-level risk of
developing HF would benefit from including these data modalities, in addition to those used in
this study.

Additionally, we used a GWAS study with an all-case HF multi-ancestry cohort to represent
HF in our study. While this is beneficial for increasing sample size and increasing power, this
might also muddle distinct signals within known phenotypic subgroups of HF or specific
ancestries given the complexity of the disease as earlier stated. Future studies may find
improvement by stratifying HF by subgroups, such as diastolic vs systolic dysfunction, to achieve
more informed results. Beyond our cohort limitations, we also acknowledge that the imputation of
gene and protein expression is influenced by the ancestry and completeness of the reference eQTL
and pQTL sets we used (GTEx v8 and ARIC). For example, known cardiomyopathy genes LMNA,
FHL1, and CALR3 were not in the GTEx eQTL set used25. These QTL reference sets were also not
disease specific. The creation of disease specific models using disease-specific RNAseq and
proteomic data may be an avenue for further improvement. Lastly, here we only considered
imputed gene and protein data modalities, based on multi-omics data from well characterized
reference populations. The use of additional modalities, such as RNAseq, protein abundance, or
methylation information would provide stronger evidence for our conclusions.
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