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In the Carolina Breast Cancer Study (CBCS), clustering census tracts based on spatial
location, demographic variables, and socioeconomic status is crucial for understanding
how these factors influence health outcomes and cancer risk. This task, known as spatial
clustering, involves identifying clusters of similar locations by considering both geographic
and characteristic patterns. While standard clustering methods such as K-means, spectral
clustering, and hierarchical clustering are well-studied, spatial clustering is less explored due
to the inherent di!erences between spatial domains and their corresponding covariates. In this
paper, we introduce a spatial clustering algorithm called Gaussian Process Spatial Clustering
(GPSC). GPSC leverages the flexibility of Gaussian Processes to cluster unobserved functions
between di!erent domains, extending traditional clustering techniques to e!ectively handle
geospatial data. We provide theoretical guarantees for GPSC’s performance and demonstrate
its capability to recover true clusters through several empirical studies. Specifically, we
identify clusters of census tracts in North Carolina based on socioeconomic and environmental
indicators associated with health and cancer risk.
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1. Introduction

There is growing research suggesting that socioenvironmental factors can play a key role
in a!ecting health outcomes, potentially contributing to health disparities in marginalized
groups, and may even predictably impact outcomes at the molecular level with diseases such as
cancer.1,2 However, identifying areas of such risk can be a di"cult task. In the community-wide
socioeconomic and environmental indicators dataset, the spatial locations of North Carolina
census tracts were paired with socioeconomic data from the American Community Survey3 from
2014 chosen to reflect socioeconomic advantage and disadvantage,4 as well as environmental
pollution data from the U.S. Environmental Protection Agency (EPA) National Air Toxics
Assessment (NATA2,5). This then poses the problem: how can geographically spread NC
census tracts be clustered together based on risk factors including socioeconomic indicators and
environmental pollution? North Carolina is known to be an ethnically diverse state,6 with a wide
range of spatially dependent di!erences in socioeconomic status such as access to healthcare,
poverty rates, and education, while meaningful clusterings must take into consideration all
these di!erences.6 A standard clustering algorithm applied to the data collected from the
patients in each tract or to the environmental variables alone fails to necessarily capture the
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significant spatial dependence inherent in the data collected in the studies. This problem is
known as spatial clustering or geospatial clustering.7

Fig. 1: Socioeconomic and environmental advantage-disadvantage latent class map of NC.

In spatial clustering, the goal is to identify clusters of similar locations based on region-
alization, as well as patterns in characteristics over those locations. Clustering of geospatial
data is a common unsupervised learning problem with many applications to areas, e.g., public
health,8 urban planning,9 or transportation,10 where geography plays an essential role.

Furthermore, spatial data, also known as geospatial data, is commonly characterized by
having a distinct geographic component.11 Unlike traditional data that only include observations
as a single set of features x, spatial data may be considered as a vector [s, x], where s → R2

represents the spatial location of the observation and x → Rp is the set of features or covariates.
The analysis of such spatial datasets poses challenges, such as accurately capturing the relative
e!ects between the spatial and covariate domains.11 Importantly, geographically close areas
may still have very di!erent patterns of characteristics, while separated areas may share
similarities and constitute a single functional cluster. Together, this can pose challenges to
traditional clustering methods that equally treat the separate domains inherent to geospatial
data such as K-means, as the geographic locations of distinct clusters may be well mixed, or
the measurements themselves of di!erent variables at those locations may be well mixed.

Without the spatial component, clustering itself is a well-studied problem with many estab-
lished techniques such as K-means clustering,12 spectral clustering,13 hierarchical clustering,14

and density-based spatial clustering of applications with noise (DBSCAN15), to name a few
popular algorithms. Each of these algorithms o!ers distinct advantages based on their modeling
assumptions when performed on di!erent types of data. Additionally, common extensions of
these algorithms include supervised fuzzy C-means,16 spatial hierarchical clustering,17 and
the generalized DBSCAN (GDBSCAN18) algorithm. These algorithms are able to better
incorporate either response labels or spatial data directly through customized distance metrics
or connectivity constraints.

However, in this paper, we consider the case of supervised spatial data, with observations
consisting of three components (s, x, y), where s → R2 is the spatial component, x → Rp is the
feature component, while y → R is the response variable of particular interests. Assuming that
in the data there is a relationship between features x, or between features and geography (s, x),
and the response y, we propose a new spatial clustering algorithm based on Gaussian Processes
(GPs), called Gaussian Process Spatial Clustering (GPSC), which groups together clusters
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based on each group’s ability to predict the response variable y. We focus on single-output
cases in this paper for simplicity, but the extension to multi-output cases where y → Rd with
d > 1 is straightforward.

For the motivating example from NC census tracts data, s is the longitude/latitude pairs
defining each state census tract, x is the set of environmental pollution variables such as levels
of hexane, lead, mercury, etc, as well as average socioeconomic indicators such as unemployment
rates, poverty rates, or education, and the y response to be predicted is a previously defined
latent class2 measuring socioeconomic and environmental advantage-disadvantage .

In order to do so, GPSC leverages the flexibility of GPs, well-studied near-universal function
approximators,19,20 to fit the true functional relationships within each clustering and to cluster
tract locations and features pertaining to socioeconomic status. Simulation studies show
that the GPSC algorithm is capable of accurately recovering and clustering these functional
relationships even in cases of limited spatial dependencies such as in the case of irregular cluster
shapes or sizes, and regardless of any dependencies in the covariate domain. This is important
because, as in Figure 1, clusters may not always be completely separated, so it is essential to
control the relative influence of each domain in the clustering done in GPSC by choosing the
kernel. Furthermore, GPSC is less sensitive to dependencies in the covariate domain compared
to traditional clustering methods such as K-means clustering. We prove that GPSC is able to
find the true clusters as long as the functional relationships between the clusters are distinct.
When applied to community-wide study, GPSC successfully clusters tracts in NC with finer
detail than traditional methods and can be interpreted by domain experts.

In summary, our contributions in this paper are 1) a novel spatial clustering GPSC algorithm,
2) theoretical support to GPSC and 3) application to NC tract level data with new interpretable
discoveries. Full proofs of theorems, implementation details, as well as extended simulations are
presented in the Supplementary Material at https://github.com/hong-niu/gpsc-psb25.

2. Model

2.1. Gaussian Process Regression

In this section, we review the GP model and its application towards regression and classification.
By definition, a GP is a random function for which any finite realization follows a multivariate
Gaussian distribution:21

Definition 2.1. f follows GP in domain ! with mean function µ and covariance function K,

denoted by f ↑ GP (µ,K), where µ : ! ↓ R, K : !↔ ! ↓ R, if for any x1, · · · , xn → !,

[y1, · · · , yn]→ := [f(x1), · · · , f(xn)]→ ↑ N(v,”),

where v = [µ(x1), · · · , µ(xn)]→ and ”ij = K(xi, xj).

A GP is completely determined by the mean function µ and the covariance function K,
also known as the kernel. In this paper, we assume µ = 0 for simplicity and use the radial
basis function (RBF), also known as the squared exponential kernel, defined as: K(x, x↑) =

ω
2
e
↓ d2(x,x→)

2b , but our model can be extended to other kernels. The two parameters, i.e., spatial
variance ω

2 and length scale b are estimated by maximizing the likelihood (MLE). Given
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training data (xi, yi)ni=1 with MLE εn = (ω2
n, bn) and a new observation x↔, the best unbiased

linear predictor (BLUP22) of y↔ = f(x↔) is given by ŷ↔ = Kωn(x↔, X)Kωn(X,X)↓1
Y, where

Kωn(x↔, X)i = Kωn(x↔, xi), Kωn(X,X)ij = Kωn(xi, xj) and Y = [y1, · · · , yn]→ → Rn. As a flexible
regression algorithm, GP can be modified into a classifier using a link function21 for a discrete
response variable y, so we will not distinguish between Gaussian process regression (GPR) and
Gaussian process classification (GPC) in this paper.

2.2. GP Spatial Clustering

Now we will consider observations {(si, xi, yi)}ni=1, where si → S ↗ R2 is the spatial location,
xi → ! → Rp is the covariate, and yi is the response variable. Let li → {1, · · · , L} be the unobserved
cluster label such that li = j ↘≃ si → Sj ↗ S, where S1, · · · ,SL is a partition of !. We focus on
the following model. yi =

∑L
j=1 1{si↗Si}fj(xi) =

∑L
j=1 1{li=j}fj(xi), where fj is unknown function

on ! in certain function class that will be discussed in Section 3. That is, the functional relation
between yi and xi varies across spatial clusters supported by Si. The goal is to recover the
cluster label li, called spatial clustering since the clusters are rooted in the spatial domain S.

For example, in the NC tracts data, each Si consists of tracts in NC, while the relationship
between the latent class and the socioeconomic and environmental covariates varies across the
tracts spatially. The goal is to partition NC into several clusters so that each cluster admits a
unique functional relationship.

For a given observation xi in cluster j with response yi, we expect the prediction error of
fj to be the lowest among all fj’s, and hence we can assign xi to the cluster with the lowest
prediction error. However, neither the cluster label li or domain partition Si, nor the functions
fj is observed. Motivated by the flexibility of GP models, we use GP to approximate the
unobserved functions fj , denoted by f̂j , and assign xi to the cluster labeled by l̂i with the lowest
prediction error: l̂i = argminj (f̂j(si, xi)⇐ yi)2. Then we update the cluster and f̂j iteratively.
The GPSC algorithm is summarized in algorithm 1.

Algorithm 1 Gaussian Process Spatial Clustering
Input: data (si, xi, yi)ni=1, number of clusters L, maximum number of iterations T

Initialize l̂i = randomInt(1, 2, · · · , L)
for t = 1 to T do

for j = 1 to L do

(Sj , Xj , Yj) = {(si, xi, yi) : l̂i = j}, f̂j = GPR(([Sj , Xj ], Yj))

end for

for i = 1 to n do

l̂i = argminj (f̂j((si, xi))⇐ yi)2

end for

end for

In this flexible construction, it is also possible to extend the reassignment function for
di!erent applications, such as reinforcing spatial contiguity constraints as is common in
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geographical clustering:

l̂i = argmin
j=1,··· ,L

{(f̂j(si, xi)⇐ yi)
2 + ϑ⇒si ⇐ Cj⇒}.

Here, Cj is the center in the spatial domain of the current cluster Sj, while ϑ is a tuning
parameter that controls the penalization of assigning points to clusters that are spatially
distant. For the rest of the paper, we will focus on the case ϑ = 0, but will demonstrate the
e!ects of adding such penalties in the simulation studies.

In summary, the inputs to the algorithm are observations {(si, xi, yi)}ni=1, along with tuning
parameters including the number of iterations T and the number of clusters L. In practice the
number of iterations T need not necessarily be large, and can be replaced with the stopping
criterion when the cluster assignments stabilize. The proper choice of the number of clusters L

is a typical challenge in the field of clustering,23 which is beyond the scope of this paper. The
choice of L often requires domain expertise specific to the application at hand, see Section 5 for
more detailed discussion. In practice, we also typically bound the parameters of the covariance
function during optimization to prevent overfitting.

3. Theory

In this section, we provide theoretical support to the GPSC algorithm. We start with the
necessary definitions to state the assumptions and theorems.

Definition 3.1. Let K be a positive definite kernel on ! ↗ Rp, then FK(!) := span{K(·, x) :
x → !} with inner product form

(∑n
i=1 aiK(·, xi),

∑m
j=1 bjK(·, x̃j)

)

K
:=

∑
i,j aibjK(xi, x̃j), so that

FK(!) is a pre-Hilbert space with a reproducing kernel K. The linear mapping # : FK(!) ↓
C(!) : #(f)(x) := (f,K(·, x))K , is injective. Then the image of #, NK(!) := #(FK(!)) is a Hilbert

space with a reproducing kernel K equipped with the inner product (f, g)K := (#↓1
f,#↓1

g)K .

For simplicity, we fix Kω to be the RBF kernel with ε = (ω2
, b) from now on.

Definition 3.2. Given observations X and x0 with unobserved y0 to be predicted. Let ϖX,x0
:

Y ⇑↓ Kω(Y )(x0, X)→Kω(Y )(X,X)↓1
Y , where ε(Y ) = argmaxω N(Y |0,K(X,X)) is the maximum

likelihood estimator of ε based on potential observations Y . That is, ϖ is the BLUP of y0 based

on observations (X,Y ). By the definition of ϖ, the smoothness of the Gaussian density function

and the linearity of BLUP, ϖ is di!erentiable.22 We also introduce the following assumptions:

(A1) ! ↗ Rp is compact and p(x) > 0, ⇓x → !, where p(x) is the density function of x.
(A2) fj → NK(!), j = 1, · · · , L.

Theorem 3.3. Under assumptions (A1)-(A2), at any iteration in Algorithm 1, let njk :=∣∣∣{i : li = j, l̂i = k}
∣∣∣, nj :=

∣∣∣{i : l̂i = j}
∣∣∣ then the current xi is a assigned to the correct cluster if

for any k ⇔= j,

∑
m ↘=j nmj∑
m ↘=j nmk

<
DlEl

DuEu
⇐ ⇒f⇒Ke

↓c1n
1
p
j + ⇒f⇒Ke

↓c2n
1
p
k

DuEun22
, (1)
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where c1 and c2 are constants, and

Dl := inf ⇒↖ϖ(Y )⇒ ↙ Du := ⇒↖ϖ(Y )⇒≃,

El := inf
x↗!,j,k=1,··· ,L

|fj(x)⇐ fk(x)| ↙ Eu := sup
x↗!,j,k=1,··· ,L

|fj(x)⇐ fk(x)| < ∝.

In particular, let L = 2, j = 1, k = 2 and let n1, n2 ↓ ∝, Equation (1) becomes:
n21

n22
<

DlEl

DuEu
.

That is, the mis-clustered proportion is small enough.

The right-hand side of inequality (1) is highly interpretable. The ratio Dl

Du
measures the

robustness of the BLUP, that is, how the BLUP changes with training data Y . The less robust
the BLUP, the smaller the ratio, and the harder it is to find the correct clusters. The ratio El

Eu

measures the separation between functions f1, · · · , fL. The smaller the separation, the smaller
the ratio, and the harder it is to find the correct clusters. Theorem 3.3 also implies that the
state of correct clustering is an absorbing state, that is, if the current clusters are close enough
to the true clusters, then perfect clustering results will be achieved in the next iteration. Note
that even if the inequality does not hold, the algorithm may still converge to a better state
with more correctly clustered data, although not within one single step. This is because even
when the right-hand side of Equation (1) is small, there might be some region !0 ↗ ! where
the fj’s are relatively well separated so that the right-hand side is relatively large on !0, so
that samples within !0 will be assigned to true clusters. Meanwhile, for the region where fj’s
are well mixed, it is challenging for all clustering algorithms.

In practice, the response variable y is often subject to measurement error, leading to a
more realistic model: y = f(x) + ϱ, where ϱ ↑ N(0, ς2) represents noise. The following theorem
serves as the counterpart to Theorem 3.3 in the presence of Gaussian noise:

Theorem 3.4. Under the same assumption and notation as of Theorem 3.3, with the addition

of Gaussian noise, the current xi is assigned to the correct cluster if for any k ⇔= j,

∑
m ↘=j nmj∑
m ↘=j nmk

<
DlEl

DuEu
⇐ ⇒f⇒Ke

↓c1n
1
p
j + ⇒f⇒Ke

↓c2n
1
p
k + φ

DuEun22
, (2)

where φ is the sum of independent ↼-distributions with degrees of freedom 1, n1 and n2 rescaled

by 2ς , ς and ς respectively.

In particular, when L = 2, j = 1, k = 2, and n1, n2 ↓ ∝, the right-hand side simplifies to
DlEl

DuEu
with probability one. When ς = 0, that is, the noise vanishes, then φ = 0 so Theorem 3.4

coincides with Theorem 3.3.

4. Simulation Studies

To evaluate the performance of GPSC, we present three simulation studies in this section,
with detailed implementation details in the Supplementary Materials. The first simulation
will demonstrate an application of Algorithm 1 in the case of responses generated by linear
functions with two clusters, while the second simulation shows the performance of GPSC
in the case of responses generated by nonlinear functions. The third simulation shows the
robustness of GPSC to noisy data and overspecified number of clusters. In all simulations, we
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compare the performance of GPSC with traditional clustering algorithms: K-means, spectral
clustering, hierarchical clustering, and DBSCAN, as well as spatial or supervised analogs:
supervised fuzzy C-means, spatial hierarchical clustering, generalized GDBSCAN, and also the
Gaussian mixture model (GMM24). We evaluate the performance using the adjusted Rand
index (ARI25) and adjusted mutual information (AMI26) against the true labels. The data used
in these simulations take the form {(si, xi, yi)}ni=1, where si → R2 is the spatial domain, xi → R2

is the covariate domain, and yi → R is the response domain, taken for visualization purposes.
Note that for all algorithms, including GPSC and the aforementioned traditional, nonspatial
clustering algorithms, the input is taken to be the full vector (s, x, y) with the spatial domain
included, so that all competitors always use the full information. The results can be directly
extended to higher p and multivariate responses.

4.1. Simulation 1 - Linear Functions

In this simulation, y is a linear function of x for visualization purposes, where both si and xi are
generated from independent uniform distributions. After generating the data {(si, xi)}ni=1, the
spatial domain is subdivided into two clusters, the center ball and the background region. The
yi → R are then generated as distinct linear functions of xi for each cluster. For visualizations
of the resulting clusters in the XY domain and all ARI/AMI scores, see Supplement D.1.

Fig. 2: [Left] GPSC results for Simulation 1, colored by cluster. The first column plots the
spatial domain si → R2, the second column plots the covariate space xi → R2, the third column
plots the response space yi → R , while the right-most column plots yi → R against xi → R2. The
first row shows the ground truth generated data. The second row shows the predicted clusters
from GPSC after randomized initialization. [Right] Clusters for Simulation 1 by nine clustering
algorithms visualized in the spatial domain.

It can be seen that this simulation is challenging for several reasons. First, there is almost
no separation considering any dimension s, x, or y on its own as in the first three columns
in Figure 2 (left); the separation is solely in the functional domain XY . As a result, most
traditional algorithms cannot capture this functional relationship, as supported by Panels 3-7
in Figure 2 (right). Although it can seen that the Gaussian mixture model is able to rediscover
the clusters in this case (Panel 2), this is due to GMM’s ability to estimate the pairwise
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linear correlation between each domain. However, we expect GMM to fail to capture nonlinear
functional relationships, as shown in the following Simulation 2. It is also noted that DBSCAN
and GDBSCAN (Panels 8 and 9) also perform reasonably well, but have challenges of their
own such as GDBSCAN greatly overestimating the number of clusters.

4.2. Simulation 2 - Nonlinear Functions

In this simulation, we will show that in an irregular spatial distribution with nonlinear
relationships between the covariates and the response variable, GPSC is still able to recover
the true functional relationships in contrast to the competitors. After generating the data
{(si, xi)}ni=1 from independent uniform distributions, the spatial domain is subdivided into
two clusters, the ring and the background region. The yi → R are then generated as distinct
nonlinear functions of xi for each cluster (the first row of Figure 3).

Fig. 3: [Left] Results for Simulation 2 with true generated data (top) and results of GPSC
(bottom). [Right] Clusters by nine di!erent algorithms visualized in the spatial domain.

It can be seen that in this more challenging simulation, only GPSC is able to recover the
true functional clusters, with the results of each clustering algorithm plotted in the spatial
domain in Figure 3 (see Supplement D.2 for more details).

4.3. Simulation 3 - Model Robustness

In Simulation 3, we present a more realistic scenario of three clusters that have some degree
of spatial separation. Motivated by our real-world application of clustering North Carolina
census tracts, the sun and moon clusters could be interpreted to represent two urban centers
surrounded by a larger rural region. By applying the spatially penalized version of GPSC, we
will show that the clustering results remain stable across both increasing levels of noise, as
well as to overspecification of the input number of clusters. Full visualization and comparisons
can be found in Supplement D.3, D.4 and D.5.

After generating the data {(si, xi)}ni=1 from independent uniform distributions, the spatial
domain is subdivided into the three clusters, the sun and moon shape, and the background
region. The yi → R are then generated as distinct nonlinear functions of xi for each cluster with
varying degrees of zero-mean Gaussian noise. For an extension of Simulation 3 to nonlinear
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functions of both si and xi, see Supplement D.5.

Noisy Responses

We first show that GPSC works under noisy conditions as per Theorem 3.4. In Figure 4, we
present Simulation 3 with noise variance = 100, showing that the spatially penalized version of
GPSC still performs well under noisy conditions. In particular, GPSC is able to outperform
competitors at all tested noise levels, where no other competitor is able to recover the true
clusters (with exact ARI/AMI scores and additional details in Supplement D.3).

Fig. 4: [Left] Results for Simulation 3 with true generated data (top) and results of GPSC
(bottom). [Right] Clusters by nine di!erent algorithms visualized in the spatial domain.

Overspecified Number of Clusters

Finally, we show that GPSC is stable when the number of clusters is overspecified. Specifically,
it can be seen in Figure 5 when the number of specified clusters is 5, the sun (teal) and moon
(yellow) clusters remain stable, while the background cluster (originally purple) is split into
three purple, indigo, and light green clusters. In contrast, the competitors are unable to recover
the true clusters when the number of clusters are overspecified, while further visualizations
and comparisons to the competitor models are presented in Supplement D.4.

Fig. 5: [Left] GPSC results for Simulation 3 with overspecified number of clusters as 5. [Right]
Results of nine algorithms with overspecified input presented in the spatial domain.
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5. Applications to NC Tract Data

This dataset consists of 29 community-wide covariates aggregated by census tracts in North
Carolina. Such covariates ranged from measures of environmental pollution to averages of
socioeconomic indicators such as unemployment, housing environment, education, etc (see
Supplement E for a full list). Each census tract is associated with a single (longitude, latitude)
pair of coordinates. The overall socioeconomic indicators were previously aggregated using
latent class analysis into a single advantage/disadvantage class with 8 categories.2

Based on the distribution of the full latent classes seen in Figure 1, we can see
that there is some degree of separation in the spatial domain between certain groups.
Thus, we initialized our GPSC algorithm by performing traditional K-means cluster-
ing on solely the spatial domain. We then applied our GPSC algorithm using this la-
tent class as the response variable, taking all other features as the set of covariates.

Fig. 6: Baseline aggregate groups of socioeco-
nomic and environmental latent class indicator.

Here, we focus on K-means clustering for
comparison due to its interpretable results
from previous studies,2 with results from
other clustering algorithms presented in
Supplement E. Based on our results, we
find that L = 3 produced the most inter-
pretable clusters, and thus aggregated the
8 latent classes into 3 as a baseline against
GPSC seen in Figure 6. Using the language
of Larson et al. (2020)2 for our predicted 3 clusters, we will consider the overall socioeconomic
and environmental advantage to be three levels: low (pink), medium (gray), and high (green).

Fig. 7: Clusters by GPSC and K-means for tract data, interpreted as overall socioeconomic
and environmental advantage between levels of low (pink), medium (grey), and high (green).

At first glance, the general spatial distribution of our GPSC and K-means algorithms tends
to agree. However, the GPSC predicted clusters di!er from K-means and baseline in several
meaningful ways. First, in the central region depicted in the first row of Figure 8, GPSC
identifies more areas of high advantage (green). Notably, this includes the area surrounding
cities such as Chapel Hill, Cary, and the capital city Raleigh (Research Triangle Park), as well
as Greensboro and High Point (the Piedmont Triad), which are known to be wealthier and
more urbanized regions of the state, whereas the K-means algorithm puts tracts within this
region in the medium (gray) advantage group.
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Towards the edges of the state we can also see significant di!erences as the GPSC algorithm
tends to further di!erentiate tracts around the extremities between low and medium advantage.
Most notably, around Asheville and Wilmington, two more prominent cities in North Carolina,
we are able to distinguish further di!erences between low and medium advantage tracts, as
seen in the second and third rows in Figures 8. Considering the ARI and AMI scores between
the two clusterings, we find the scores to be both 0.002, suggesting that clusterings, despite
visually seeming to separate the tracts spatially in similar patterns, are actually very di!erent.
One challenge of K-means clustering when determining the original 8 latent classes2 was

Fig. 8: GPSC and K-means cluster results for NC tracts. Column 1: Central NC; Column 2:
Western NC (Asheville); Column 3: Southeastern NC (Wilmington)

a potential lack of finer detail from the K-means predicted clusters. However, here we have
shown that despite using the same L = 3 clusters, GPSC is able to further di!erentiate between
areas of low and medium disadvantage, in less dense areas of the state along the coast and the
western region. Furthermore, there is reason to believe that not all 8 classes are necessary to
describe the di!erent advantage groups. In the original grouping, the latent class 2 is actually
an empty group, as seen in Figure 1. Thus, the results from GPSC in comparison to K-means
and baseline suggest that the algorithm is able to better balance nuance against a traditional
clustering algorithm, while also retaining simpler interpretability by using fewer clusters.

6. Discussion

Spatial clustering o!ers unique challenges in comparison to traditional clustering problems due
to the spatial domain inherent to geographic data. In our application, the census tract data
have distinctly di!erent properties compared to the measured covariates over the tracts. In
this paper, we propose a GP-based clustering algorithm and demonstrate its performance in
both simulation studies and a real data application. The advantages of GPSC include being
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able to capture the relative e!ects between the spatial domain and the measured covariates,
largely independent of intersections in the covariate domain as long as the clustered functions
themselves have some degree of separation. We also provide theoretical guarantees to the
convergence of GPSC and extend it to noisy settings.

GPSC can also be highly scalable; the complexity of the algorithm stems from the fitting
of each GP in each iteration, where standard Gaussian processes regression is O(n3) in the
size of the input. In our case, we applied a standard Gaussian process regression model from
the scikit-learn package27 since our sample size was relatively small. However, in cases of large
sample size, scalable GP methods can be applied for a reduction in runtime to O(n log n).28

The GPSC model also has few tuning parameters, notably the number of clusters, optional
spatial penalty for data thought to contain spatially contiguous clusters, and and can also
be highly flexible through the choice of GP kernel. Although the form of our theorem is
independent of the specific choice of kernel (only the convergence rate will di!er), in practice
more nuanced anisotropic or nonstationary kernels may be more suitable for datasets with
strong heterogeneity, for which the actual design of such kernels remains an open problem.

In the real-world application, we applied GPSC to a North Carolina socioeconomic and
environmental indicator dataset and found distinct patterns of advantage-disadvantage across
the state that captured finer details around the less dense outer regions of the state in
comparison to K-means and other clustering methods (presented in Supplement E), while
our method also o!ered simpler interpretability than previous analysis. When utilized by
domain experts, the goal of the results of these models is to supplement the identification of
marginalized communities, which could be targeted with interventions. Furthermore, in context
of our long-term goal of designing interventions, ensuring the accuracy of these models is also
of high ethical importance. Therefore in our case, before any application, we can perform
sensitivity analyses that tile the geographic region with alternative regional classifiers (county,
AHEC region, latitude and longitude tiles of uniform size) to confirm that the same areas
arise in multiple boundary definitions. This will confirm that the boundary definitions are
not driving artifactual associations. More broadly, it is important that in these high-stakes
applications we do not over-rely on any one method. We envisage the possibility of using these
clustering results (and GPSC in general) as a supplementary tool for experts to potentially
better identify marginalized communities and areas that may be otherwise overlooked.
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