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Alzheimer’s Disease and Related Dementias (ADRD) afflict almost 7 million people in the
USA alone. The majority of research in ADRD is conducted using post-mortem samples
of brain tissue or carefully recruited clinical trial patients. While these resources are excel-
lent, they suffer from lack of sex/gender, and racial/ethnic inclusiveness. Electronic Health
Records (EHR) data has the potential to bridge this gap by including real-world ADRD pa-
tients treated during routine clinical care. In this study, we utilize EHR data from a cohort
of 70,420 ADRD patients diagnosed and treated at Penn Medicine. Our goal is to uncover
important risk features leading to three types of Neuro-Degenerative Disorders (NDD), in-
cluding Alzheimer’s Disease (AD), Parkinson’s Disease (PD) and Other Dementias (OD).
We employ a variety of Machine Learning (ML) Methods, including uni-variate and multi-
variate ML approaches and compare accuracies across the ML methods. We also investigate
the types of features identified by each method, the overlapping features and the unique
features to highlight important advantages and disadvantages of each approach specific for
certain NDD types. Our study is important for those interested in studying ADRD and NDD
in EHRs as it highlights the strengths and limitations of popular approaches employed in
the ML community. We found that the uni-variate approach was able to uncover features
that were important and rare for specific types of NDD (AD, PD, OD), which is important
from a clinical perspective. Features that were found across all methods represent features
that are the most robust.
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1. Introduction

1.1 Alzheimer’s Disease and Related Dementias

ADRD afflicts an estimated 6.9 million people in the United States of America (USA), us-
ing current July 2024 statistics.! ADRD and dementia collectively kill more patients per year
than breast and prostate cancers combined.! However, despite its frequency of incidence, not
much is known about ADRD patients in community-based settings. This is because the major-
ity of Alzheimer’s Disease (AD) research focuses on post-mortem (after the patient has died)
samples or patients recruited through expensive clinical trials (that often lack racial/ethnic di-
versity). In addition, there remains a paucity of research among diverse populations, including
investigating sex-disparities? and racial disparities® in outcomes. Additionally, many state-of-
the-art studies on ADRD have limited generalizability because of the almost exclusive use of
trials that lack race/ethnicity /socioeconomic inclusiveness,* leading to a diversity dearth.’
1.2 Electronic Health Records (EHRs)

The recent development and implementation of EHRs now provide a tremendous opportu-
nity to evaluate ADRD patients from community-based settings that includes in-patient and
outpatient medical records data obtained through routine clinical care. EHR data contain
information on millions of patients from both in-patient and out-patient settings. They often
contain more representative patient populations (in terms of race, ethnicity, and socioeconomic
inclusiveness) than clinical trials due to their community-based settings. Several studies have
used EHR data for AD research. Xu et al.® developed a data-driven method to uncover four
subphenotypes of AD from EHRs. Their subphenotypes were correlated with common co-
morbidities of ADRD, including mental health diseases and cardiovascular disease.® None of
these prior studies (as far as we are able to glean from the reported papers) have incorporated
socioeconomic or racial/ethnic disparities into their algorithm development. This is important
as not properly capturing these features can lead to biased research results.”®
1.3 Uni-variate Association Mining

While Xu et al. utilized unsupervised Machine Learning (ML) methods to learn types of
ADRD (a form of neurodegenerative disorder (NDD)) from the data itself, another common
method for uncovering important features or characteristics of a dataset is to utilize associa-
tion mining. Association mining is used extensively in EHR research through a process called
Phenotype-Wide Association Studies (PheWAS) first introduced in 2010 by Denny et al.? In
their study they held the genetic variant constant while looping over a wide range of clini-
cal EHR-derived phenotypes.? This process was then employed by BioBanks throughout the
USA and abroad, but also applied to EHR datasets not linked to BioBank data.??® Others
used EHR data without genetic information to perform association mining or PheWAS style
studies.'® Boland et al. employed a similar algorithmic approach when exploring the relation-
ship between birth seasonality and later risk of disease through a method first published in
2015'9 and later replicated in several studies.?%23 The essence of association mining is to test
for an association (using some statistical method, e.g., chi-square test, fisher’s exact test, or
regression) between each phenotype (typically represented as columns in a matrix) and the
outcome of interest. In this study, our outcomes are three different NDD types. Therefore,
the outcome is set (in this work either AD, PD or OD) a priori and then each phenotype
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(i.e., covariate/feature/column) is tested for association with that outcome of interest. If one
wants to investigate more than one outcome (in this case our different NDD types) then one
simply repeats the entire process over again with each outcome. We construct our algorithm
such that outcome Y is always the same (in this case a binary indicator variable for whether
or not the patient has/had a particular NDD type, e.g., PD). We then have our intercept
term (Bp) and our term related to that particular feature that is being tested (or iterated
over) is X and the coefficient term related to the feature is represented as 3,. We will loop
over all potential features and therefore with each iteration the actual feature in X and the
corresponding coefficient 8, will change. A sample regression equation for a binary outcome
of interest (NDD type: Parkinson’s Disease) is as follows:

}/(NDD type: Parkinson’'sDisease) — BO + /BZ‘ * X,

with 3, indicating the term for each phenotype (or feature) that will be iterated over. There-
fore, in our example the first feature would be some clinical or demographic feature, followed
by the second feature until all features have been iterated over. Typically, there are a large
number of associations explored (often into the thousands) requiring multiple hypothesis cor-
rection methods to adjust for multiple comparisons.
1.4 Multivariate Association Mining: SHapley Additive exPlanations

SHapley Additive exPlanations (SHAP) is a method to explain individual predictions
based on Shapley values from cooperative game theory.?* It assigns each feature an impor-
tance value for a particular prediction,?® aiming to fairly distribute the ‘payout’ (prediction)
among features. SHAP provides both local explanations for individual predictions and global
interpretation methods, linking optimal credit allocation with local explanations using Shapley
values.?6

In the context of EHR data, SHAP can be a powerful tool for interpreting the predictions
made by the models. This study uses PD, AD, and OD as separate outcomes. Each patient
in the dataset can be considered as an instance for which a prediction is made. The features
are the ‘players’ in the game. The ‘payout’ is the prediction of whether a patient has PD,
AD, or OD. For example, if a model predicts a certain patient has a high risk of developing
PD, SHAP can help us understand how each feature contributes to this prediction. This can
provide valuable insights into which factors are most influential in predicting PD, AD, or OD.

The Shapley value is the average of all the marginal contributions to all possible coali-
tions.?* For a set N of n features, the Shapley value ¢;(v) of feature i is:

swy= 3 BEIE= D (i) - u(s)) 1)

n.
SCN\{i}

where S is a subset of features not including feature i, v is a value function that represents
the model’s prediction for a subset of features, v(S) is the prediction for subset S, and |S| is
the number of features in S.

The SHAP explanation method computes Shapley values. Let g be is the explanation
model, 2’ € {0,1} the coalition vector, M the maximum coalition size, and ¢; € R the feature
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attribution, i.e., the Shapley values for feature j. SHAP is defined mathematically as follows:
M

g(2) = o+ > ;2] (2)
j=1

In Equation 2, an entry of 1 in the coalition vector indicates that the corresponding feature
value is ‘present’, whereas an entry of 0 signifies that it is ‘absent’. Within the framework of
SHAP, the Shapley values help us understand each feature’s contribution to the prediction.

2. Dataset

2.1 Dataset Description

We obtained de-identified EHR data
from Penn Medicine for patients with
ADRD using a set of diagnosis codes. The
age range of our medical records indicate
that the majority of the EHR data was col-
lected between 2002 and 2022 with some
diagnosis dates occurring earlier (all the
way back to the 1920s indicating man-
ually entered diagnosis information that
was pertinent for specific patients). The
internal Clinical Data Warehouse at Penn Fig. 1. Venn Diagram of Patients Diagnosed with
Medicine converted the International Clas- PD, AD and OD.
sification of Diseases (ICD) version 9 (ICD-
9) codes to version 10 (ICD-10). We have cross-mapped our list of ADRD diagnostic codes
using existing resources?” to provide researchers with our full list of ICD-9 and ICD-10 diagno-
sis codes for ADRD identification.?® The EHR data comes in the Observational Health Data
Sciences and Informatics (OHDSI) Common Data Model (CDM) format with relevant data
broken down into several files corresponding to tables in a SQL database. The dataset contains
information on patients’ encounters, diagnoses, medications, procedures, vitals, laboratory
findings, chemotherapy, and laboratory values. This study was approved by the University of
Pennsylvania’s Institutional Review Board (IRB) with approval id: 851588. We mapped our
entire dataset consisting of 70,420 ADRD patients to their corresponding PheCodes. This al-
lowed us to identify 14,911 patients with AD diagnoses specifically (PheCode:290.11), 16,216
patients with PD diagnoses specifically (PheCode:332) and 14,911 patients with ‘Dementias’
(PheCode:290.10) called in this paper Other Dementias (OD), which is an unspecified generic
dementia category. Demographics are provided in Table 1 and visualized in Figure 2. The
Venn diagram in Figure 1 represents the overlap of patients diagnosed with PD, AD, and OD.

Demographic factors differs among the three NDD subtypes. Figure 2 shows the Racial
and Sex distributions across the NDD types. The bars represent percentages of different racial
groups for four categories: AD, PD, OD, and Overall. White individuals have a higher per-
centage of PD, whereas Black or African Americans have a higher percentage of OD diagnoses
(Figure 2). Figure 2 shows that females have a higher percentage of NDD types that include
AD and OD compared to males. On the other hand, males have a higher percentage of PD
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compared to females. Overall, across NDD types, there was a higher proportion of females
with ADRD diagnoses than males (54.43% vs. 45.56%).
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Fig. 2. Racial and Sex Distribution by NDD type.
Table 1. Demographics of ADRD Patients by NDD type.
. AD(% PD(% OD(% Overall(%
Attribute | Value g 0 1)4911) (N v 36216) (N ¢ 1)4911) (N = 7(()42)0)
White 63.62 76.26 54.34 65.01
BAA 24.12 9.43 33.56 22.64
Asian 2.11 2.95 1.3 2.34
Race |NHOPI |0.1 0.09 0.16 0.12
ATAN 0.05 0.07 0.04 0.08
Unknown | 10.01 11.2 10.59 9.81
Female |62.89 39.25 59.82 54.43
Gender |Male 37.11 60.75 40.15 45.56
Missing | 0.01 0 0.03 0.01

AD: Alzheimer’s Disease, PD: Parkinson’s Disease, OD: Other Dementias, BAA: Black or African American,
NHOPI: Native Hawaiian or Other Pacific Islande, ATAN: American Indian or Alaska Native.

2.2 Dataset Preprocessing

Our raw data consisted of diagnosis code information in both ICD version 9 (ICD-9) and
version 10 (ICD-10). We mapped these codes to their respective PheCodes.?? These PheCodes
were used for each terminology system (ICD-9 and ICD-10), aligning on the ‘code_system’ and
‘code’ fields. This also allowed us to collapse results to the PheCode level rather than using
individual ICD-9 and ICD-10 codes. To enable quantitative analysis, we used one-hot encod-
ing of these categorical data to transform those data into binary format with one column per
unique PheCode. For each unique phenotype (PheCode) identified, we created a new column
in the diagnosis data and assigned binary values indicating the presence (1) or absence (0) of
the phenotype (PheCode) for each patient. The final dataset comprised of patient identifiers,
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demographic information, and binary-encoded phenotypes, providing a structured and analyz-
able representation of the patient diagnosis data. We also transformed the Race variable using
one-hot encoding with Race_White, Race_Black, Race_Asian and Race_Other with each cor-
responding to a binary relationship with the race variable. We also transformed the Hispanic
and Sex_Male columns to binary variables. We also included features pertaining to the type
of hospital-visit, including: chemotherapy, emergency_visit, inpatient_visit, ambulatory_visit,
and other_unknown_visit. Like the demographic features, each of these was binary indicating
that a patient had at least one occurrence of that particular type of visit or chemotherapy.

For the multi-variate analysis no missing data was allowed, and therefore the missing data
for Hispanic and Sex_Male were coded with -1 to indicate that those values were missing. We
decided not to use imputation methods because that could result in other biases. For the uni-
variate analysis, this was not needed as each feature was assessed one at a time and therefore,
if there was missing data for a feature then those rows would be dropped automatically from
the analysis via the glm() function in R.

3. Methodology

3.1 Uni-variate Logistic Regression Association Mining

We utilize traditional EHR association mining methods.'® To do this, we evaluate each
NDD type as an outcome separately to compare the features association with that particular
type of NDD. This allows us to identify features that are strongly associated with a par-
ticular NDD type, and also features that are only associated with one NDD type. For each
outcome (AD, PD, OD), we test each feature for its association with the outcome. Each fea-
ture (N=1796) was tested for association with each outcome (hence uni-variate association
mining). The majority of features were conditions/diseases represented by PheCodes. The
non-PheCode features included demographic features: Race_White, Race_Black, Race_Asian,
Race_Other, Hispanic and Sex_Male. Hospital-visit characteristic features were also explored
including: chemotherapy, emergency visit, ambulatory visit, inpatient visit, and other unknown
visit. Each of these was binary indicating that a patient had at least one occurrence of that
particular type of visit or chemotherapy. Once all features were tested for association with
each NDD type, we then removed the intercept terms from our model results and corrected
for multiple hypothesis testing using the Bonferroni adjustment method, defined as:

corrected p-value = a/N = 0.05/1796

where alpha represents our significance cutoff (0.05 in this case) and N represents the number
of tests (1796 in this case).

We used Logistic Regression (LR) to test for the association between each feature and the
NDD type, given that the outcome variables are binary. This analysis was performed in the
statistical programming language R using the glm() function with the statistical family set
to binomial (i.e., to perform LR). Importantly, while we tested 1796 features for association
with each NDD type, in the Venn Diagrams we only show 1794 features because we removed
the features that consist of the NDD types themselves (AD, PD, and OD).

3.2 Machine Learning (ML) Methods
We employed three distinct models: LR, Ridge Regression (RR), and a Residual Network
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(ResNet) based Neural Network, to predict the occurrence of PD; AD and OD separately. The
dataset, after preprocessing, consisted of a feature set of 1796 features per NDD type model.
The data was split into training and testing sets in an 80:20 ratio. We used ‘LogisticRegres-
sion’” and ‘Ridge’ from Python package ‘sklearn’.?® We implemented a ResNet model using
Keras, starting with an input layer for feature vectors, followed by a dense layer with 64 units,
batch normalization, ReLLU activation, and a dropout layer (rate 0.5) to prevent over-fitting.
The model’s core has five ResNet blocks, each comprising two dense layers with batch normal-
ization, ReLU activation, and dropout (rate 0.5). The output of the second dense layer was
added to the block’s input tensor, followed by ReLU activation. The final output was gener-
ated by a dense layer with a single unit and sigmoid activation. We used the Adam optimizer
(learning rate 0.001), binary cross-entropy loss, and accuracy as the metric. Early stopping
with a patience of 5 epochs was employed to mitigate over-fitting. The model was trained for
up to 50 epochs with a batch size of 32, using 20% of the training data for validation.

We performed 5-fold cross-validation on the training set for all the above-mentioned mod-
els. The models were then trained on the entire training dataset. A bootstrapping procedure
generated multiple bootstrap samples from the test data, evaluated the model’s accuracy on
each sample, and used those accuracies to compute the 95% confidence intervals.

3.3 Analysis with SHAP

We aim to identify factors contributing to the progression of AD, PD, and OD using the
SHAP method. To do this, we construct separate models for each NDD type, using patient
attributes as predictors. The target variable was defined as the presence or absence of AD.
Similarly, separate models were constructed for PD and OD. The value of the target variable is
1 if the targeted event happened to the subject during the whole project and 0 otherwise. For
each outcome (AD, PD, OD), we train the models mentioned in subsection 3.2 to determine
the presence or absence of the disease. The SHAP method from the ‘shap’?® Python package
was used to identify significant features using LR and RR. We used LinearExplainer for both
LR and RR models. #

3.4 Feature Selection and Top 5% Subset

For methods that used multi-variate approaches, we selected features as being important if
the mean shapley value for that feature was greater than or equal to the overall mean shapley
value for that NDD type.?! For the uni-variate approach, we selected features as important if
their Bonferroni adjusted p-value was statistically significant. For the 5% subset, we selected
the top 5% of features from each method and each NDD type. The top 5% of features amounts
to 90 features from our overall feature set. The features are ranked based on their mean shapley
value if a multi-variate method, or their p-value if a uni-variate method.

4. Results

4.1 Uni-Variate Assoication Mining Results
We found 340 significant associations with AD, 590 significant associations with PD and

8For the ResNet-based Neural Network, we encountered significant computational constraints using KernelExplainer due to its inherent
complexity and the large size of the dataset. Consequently, to maintain consistency in our analysis of feature importance, we proceeded

without considering the contributions derived from the neural network model.
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583 significant associations with OD using uni-variate LR. Table 2 reports findings based
on nominal significance, Bonferroni adjusted significance and a combination of Bonferroni
significance and Odds Ratio > 2. We visualized the uni-variate LR results using Manhattan
plots for each NDD type: AD (in Figure 3A), PD (in Figure 3B) and OD (in Figure 3C). One
can see that there are many Bonferroni significant results spread across the NDD types, but
that AD has only a few significant results (see Figure 3A).

Table 2. Number of Association Mining Results

H Results AD PD OD H
Number of Nominal Significant Results 723 1017 971
Number of Bonferroni Significant Results 340 590 583
Number of Bonferroni Significant Results and OR >2 3 16 278

A Alzheimer's Disease
- oni Adjusted
- in

—log(p-value)
200 400 600

o

B Parkinson's Disease

—log(p-value)

(@

200 400 600

—log(p-value)

]

Fig. 3. Manhattan Plot for NDD type: AD, PD, OD

4.2 Performance of Multi-variate Methods for: AD, PD, OD

Table 3. Accuracy Performance of ML Methods by NDD type (All Features, N=1796).

Out- | Logistic Regression (LR) Ridge Regression (RR) Neural Net (ResNet)
come| CI(95%) v CI(95%) oy CI(95%)
Train| Test | [lower, Train| Test | [lower, Train| Test | [lower,
(mean) (mean) (mean)
upper] upper] upper|
[78.74, [78.73, [78.59,
AD | 78.48 | 80.1 |79.44 80.08] 78.8 [79.85]79.43 80.07] 79.03 |79.87|79.26 79.89]
[84.58, [82.58, [84.32,
PD | 85.07 [86.51|85.17 85.77] 83.34 |84.29|83.21 83.83] 84.83 |88.49(84.89 85.5]
[83.91, [83.56, [85.76,
OD | 84.91 [86.37| 84.5 85.11] 84.37 | 85.5 |84.15 84.75] 86.49 [88.51(86.34 86.92]
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Table 4. Accuracy Performance of ML Methods by NDD type (Intersection Features).

Out- Logistic Regression (LR) Ridge Regression (RR) Neural Net (ResNet)
come o CI(95%) oy CI(95%) v CI (95%)
Train| Test | [lower, Train| Test | [lower, Train| Test | [lower,
(mean) (mean) (mean)
upper] upper| upper|
AD [78.88, [78.76, [79.67,
(N=180) 78.99 | 79.2 |79.54 80.18] 78.99 |79.03|79.47 80.13] 79.95 |80.25|80.32 80.94]
PD [84.46, [82.56, [85.57,
(N=225) 85.54 |85.76(85.05 85.63] 83.28 |83.47| 83.2 83.84] 86.15 |87.87(86.16 86.71]
OD [84.24, [83.73, [87.44,
(N=205) 85.06 |85.29| 84.8 85.41] 84.45 |84.56(84.29 84.83] 88.22 |189.95(87.98 88.51]

Tables 3 and 4 present the performance metrics of patients with NDD types of PD, AD, and
OD, assessed using different ML models: LR, RR, and ResNet. For each NDD type, both of
the tables display cross-validation mean accuracy (cv mean), the training and testing accuracy
percentages alongside the 95% confidence intervals (Cls) for both the lower and upper bounds
with respect to testing accuracy. The test accuracies are obtained using a held-out independent
test set. The main difference between the two tables is the number of features used for training
the models. In Table 3, all features were used, while in Table 4, only selected intersectional
subsets of features mentioned in Section 5 were used. In both tables, we additionally included
PD and AD as features with OD as the outcome, PD and OD as features with AD as the
outcome, and AD and OD as features with PD as the outcome while evaluating the models’
performances.

Results for all 1796 features shown in Table 3. LR, RR and ResNet models show slight
variations in the mean cv, training, testing accuracies and Cls. In Table 4, the models show
comparable results, highlighting the contribution of the reduced feature sets of 180 features for
AD, 225 for PD, and 205 for OD. Tables 3 and 4 demonstrate that the use of selected features,
as opposed to all features, does not significantly degrade model performance. Specifically, the
slight differences in test accuracy, e.g., 79.44% vs. 79.54% for AD classification using LR,
indicate that the models maintain robust performance even with reduced feature sets.

4.3 Overlap of Features Across Methods per NDD type

Characteristics of important features are given in Table 5. Non-overlapping features rep-
resent those that are unique to one method. We show the results for the 5% subset and the
entire set of important features. AD had the lowest amount of non-overlapping features at
30.7% indicating that many of the features found by methods when applied to AD were simi-
lar Table 5. However, both PD and OD had higher amounts of non-overlapping features (i.e.,
unique) with 48.3% and 51.3% respectively in Table 5. Depending on the particular use case,
some researchers may want to use only the top important features, which is our rationale for
the top 5% feature subset from each method. This results in the same number of features
being selected per method (i.e., 90 features). We found that for the 2 NDD types with less
overlap (i.e., PD and OD) there were fewer non-overlapping features in the top 5% subset with
35.8% vs. 48.3% for PD, and 41.8% vs. 51.3% for OD. However, for AD, which already had
a high agreement across methods, the top 5% of features actually had more non-overlapping
features with 38.6% vs. 30.7% in the 5% subset in Table 5.
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Table 5. Characteristics of Important Features
Results ‘ AD PD OD ‘

All Important Features
Total Number of Important Features Across Methods | 567 681 708
Number of Non-Overlapping Features 174 329 363
Percentage of Non-Overlapping Important Features | 30.7% 48.3% 51.3%
Top 5% Feature Subset
Total Number of Important Features Across Methods 140 137 146
Number of Non-Overlapping Features 54 49 61
Percentage of Non-Overlapping Important Features | 38.6% 35.8% 41.8%

Feature penetrance indicates how often a feature was determined to be important by one
of the three methods used for each NDD type. We also calculated penetrance across all NDD
types, therefore a feature could have a maximum of 9 to indicate that it was found across all
3 NDD types and methods.?® However, in some situations differences across methods maybe
important. The Venn diagrams show the results for all important features and for only the
top 5% of features for AD Figure 4A, for PD Figure 4B and for OD Figure 4C. Results for the
intersections appear similar across the NDD types with OD having a larger number of features
overall, mainly resulting from the large number of OD results generated by the uni-variate
LR approach. Figure 4C. A imornnesits  Alzheimer’s Disease  opss ot reatures 50

1

Many interesting unique features were
identified using the uni-variate LR method,
including the association between Creutzfeldt-
Jakob Disease or (CJD) and OD with
a large reported Odds Ratio (OR=51.87, o
95% CI: 18.88, 214.32). Note that CJD
is listed in the PheCodes as Jakob
Creutzfeldt Disease (PheCode:324.1). The
percentage of individuals with CJD and
OD was 93.18% versus 4.55% with AD and
2.27% with PD ( Figure 5).

171

B All Important Results Parkinson’s Disease Top 5% of Features (90)

A: LR-Univariate;
B: LR-Multivariate;

5. Discussion C: Ridge-Multivariate

5.1 Overview of Study C Hmperen et
Overall, our study found that it is pos-
sible to identify important features for dif-
ferent NDD types, specifically AD, PD and
OD. We found that the performance ob-
tained using the specific method (LR, RR
or ResNet) in terms of accuracy varied
somewhat by NDD type, with all achiev- Fig. 4. Venn Diagram of Important Features for
ing similar performance. We also found  NDD type: AD, PD, and OD.
that while methods achieved similar per-
formance overall, there were substantial differences in ‘important’ features revealed by each

Dementia Top 5% of Features (90)

A: LR-Univariate;
B: LR-Multivariate;
C: Ridge-Multivariate
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method. We identified features that were common (i.e., found by each method) and also fea-
tures that were unique to one particular method. Therefore, our findings are important for
others using EHR data for ADRD analyses because the ‘important’ features identified not
only varies by statistical method used, but also by NDD type. Because of the heterogeneity
of EHR data, the exact prevalence of each NDD type may vary by site to site, making this
finding of importance for those utilizing EHR data for ADRD analyses.

The features found in the intersec- 100 e
tion of all 3 methods, namely uni-variate *
LR, multivariate LR (identified using shap- .
ley values), and multi-variate RR (iden- -
tified via shapley values) may represent w
the most significant and robust features. N
These features are of particular interest 10 - -
because they are important across multi- ’ S ot —

ple methods, suggesting they are less likely
to be influenced by confounding factors.
In contrast, features identified by only one
method may be less reliable and could be artifacts of the specific analytical approach used.
Therefore, focusing on the intersecting features provides a more comprehensive and reliable
understanding of the key predictors in the dataset. However, we will describe below circum-
stances that illustrate the advantages and disadvantages of various methods and features
identified by the methods indicating that the intersection features may include only a subset
of the truly ‘important’ features.

Fig. 5. Distribution of Creutzfeldt-Jakob disease
(CJD) by NDD types.

5.2 Uni-variate versus Multivariate Models

CJD Disease Identified via Uni-variate Method Alone. There are some findings that
were only uncovered via the uni-variate LR approach. It was the only method that revealed
that CJD was significant in OD (one of the NDD types), and clearly there is a dramatic
difference in our dataset for the prevalence observed among those with CJD with the majority
of individuals having OD (see Figure 5). CJD is established as a rare cause of dementia®? and
therefore, this finding is of clinical significance and would be missed in multivariate approaches
due to the overall rarity of this disease. However, there have been studies that found that CJD
could be mistaken for AD3? indicating that clinically distinguishing these various diseases
can be challenging in different circumstances. CJD is an example of one of the 308 features
identified for OD that were only identified using the uni-variate LR approach (see Figure 4C).
There were 6 OD features uniquely identified via the Multi-variate RR approach, but these
features were odd, and included ‘late pregnancy and failed induction’ along with ‘genital
prolapse’, which indicates that perhaps these findings were associated with a lower chance of
OD. However, our population only includes those who are 65 and older and therefore, these
features existing in our cohort remains somewhat odd. Features unique to the multi-variate LR
approach also appeared somewhat unusual, including ‘elevated Prostate Specific Antigen’(PSA
test). This is an unusual finding given that our OD patients were predominantly female.

Sleep Apnea. Interestingly, the PheCode for Sleep Apnea (PheCode:327.30) was found
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to be significant for AD across all 3 methods, including both multi-variate and uni-variate
approaches. However, the uni-variate LR approach also identified another related PheCode
for Obstructive Sleep Apnea (PheCode:327.32) as being significantly important for the AD
type. The ‘Obstructive Sleep Apnea’ or OSA PheCode was not identified as being important
by the other multi-variate approaches, and indicates a finding unique to the uni-variate method
for the AD type, one of the 116 unique features in Figure 4A. This also represents a clinical
relevant finding as OSA has been linked with AD specifically in a number of studies3*3°
indicating its importance in the AD type.

Overall Advantages of Uni-variate Alone. Overall, these findings highlight a main
advantage of uni-variate LR (sometimes referred to as a ‘traditional approach’ for ML) in that
it enables one to calculate Odds Ratios (OR) and to determine whether a finding increases or
decreases the risk of diagnosis for each NDD type. Shapley values on the other hand provide
the importance of the feature without the directionality of the finding, which in some cases
makes them more difficult to interpret, and might be the reason for some of these results
identified as unique to the multi-variate approaches. Overall, our findings suggest that uni-
variate LR may be better at detecting NDD-type-specific differences, even with smaller sample
sizes like we observed with CJD. Features supported across the methods appear to be more
robust than features identified by just one method - unless that method was a uni-variate
approach (again due to the advantages of ORs and directionality of the result).

5.3 Performance Varies by NDD type: AD, PD, and OD

Based on the models’ performance presented in Tables 3 and 4, it is evident that the
performance of different ML methods varies depending on both the NDD type and the method
used. When using LR with all features, the highest accuracy was achieved when detecting PD
with a test accuracy of 85.17%, while the lowest accuracy was for AD with a test accuracy of
79.44%. In contrast, when using RR and ResNet, the highest accuracy was for OD with a test
accuracy of 84.15% and 86.34%, but the lowest accuracy was again for AD with a test accuracy
of 79.43% and 79.26%. The performances using the subset of the features also demonstrate
similar pattern. RR had the lowest test accuracy for all 3 NDD types across all features (in
table 3) and the intersectional subsets of features (in table 4). While ResNet demonstrated the
highest test accuracy using all features in classifying OD, LR had the highest test accuracy
for AD and PD. On the other hand, in Table 4 the ResNet model significantly outperformed
the regression models’ test accuracies for all NDD types. The ResNet’s superior performance
implies the possibility that this increased performance is due to the neural network’s capacity
to learn complex, non-linear relationships, which might be more important for certain NDD

types.

5.4 Comparison of Feature Results Across Methods

Interestingly, when applying Neural Net with selected features for prediction purposes,
there was an increase in accuracy across all NDD types compared to using all features as
presented in Tables 3 and 4. Both AD and OD predictions yield higher test accuracies with
intersection features rather than the full feature set with all the 3 models. Although PD
results demonstrate a slight decrease in test accuracies for both LR and RR while using
instersectional features, the train accuracies also decrease. These observations suggest that
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our feature selection enhances model performance by reducing noise and focusing on the most
relevant information. The use of intersection features, which encapsulate the most critical and
discriminative attributes, facilitates better generalization across models, reducing overfitting
and improving robustness.

5.5 Implications of Our Findings on Other ADRD ML Studies

Spectrum bias®637 occurs when a test is studied among a population that is not represen-
tative of the intended target population. For example, if a study is conducted on an ADRD
population using EHR data in Florida with a large population of ADRD patients having
OD and then that method was applied in a population from Delaware where the majority of
ADRD patients have PD, that could result in spectrum bias. Therefore, it is important to
understand the important disease features that are unique to each NDD type: AD, PD and
OD because the case-mix distribution of patients among ADRD patients may vary across the
USA. Therefore, to develop robust ML models, we must understand the relationships between
these features and each NDD type to understand if models (ours and others) will validate
adequately at other locations in the USA treating ADRD patients.

6. Conclusion

In conclusion, we utilized a large (70,420 patients) ADRD cohort derived from EHR data
collected during routine clinical care. Our cohort is an order of magnitude larger in size (70k
versus 7k) than another recent ML ADRD study using EHR data.% Using this large and
comprehensive dataset, we aimed to identify important diagnostic features for the NDD types
using a variety of ML methods. Our study demonstrates the strengths and weakness of uni-
variate and multivariate ML methods in detecting features specific to certain NDD types,
namely, AD, PD and OD. We report accuracies of these methods and report what NDD
types where each method worked best. We also identified features that were found across all
methods, and features that were unique to a particular method. We share these findings with
the research community with the goal of mitigating spectrum bias in ADRD studies as the
NDD types vary from site to site across the USA and could therefore introduce biases if not
accounted for.
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