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Given the complexity and multifactorial nature of Alzheimer’s disease, investigating po-
tential drug-gene targets is imperative for developing effective therapies and advancing our
understanding of the underlying mechanisms driving the disease. We present an explainable
ML model that integrates the role and impact of gene interactions to drive the genomic
variant feature selection. The model leverages both the Alzheimer’s knowledge base and the
Drug-Gene interaction database (DGIdb) to identify a list of biologically plausible novel
gene-drug targets for further investigation. Model validation is performed on an ethnically
diverse study sample obtained from the Alzheimer’s Disease Sequencing Project (ADSP), a
multi-ancestry multi-cohort genomic study. To mitigate population stratification and spu-
rious associations from ML analysis, we implemented novel data curation methods. The
study outcomes include a set of possible gene targets for further functional follow-up and
drug repurposing.
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1. Introduction

Alzheimer’s disease is the most common cause of dementia, and its prevalence is rapidly
increasing due to extended lifespans worldwide.1 With this surge, there is an urgent need
to identify therapeutic targets, potential biomarkers, and risk predictive strategies.2 Lack of
success in recent clinical trials confirmed that AD pathology is very complex and a greater
understanding of the underlying mechanisms that contribute to aging and neurodegenerative
processes is critical.3 AD is considered to have a large genetic component and is highly herita-
ble.4 The polygenic nature of AD presents an obstacle to early diagnosis and risk prediction.2
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Research on AD is a national priority, with 6.5 million Americans affected at an annual cost of
more than $250 billion and no definitive cure available.5–7 This places a significant priority on
discovery and approval of therapeutics treatment for AD.7–9 Drug repurposing involves finding
new therapeutic uses for existing drugs that are already on the market.10 This can lead to sig-
nificant savings in both time and cost compared to developing new drugs from scratch. Since
the safety profiles of these drugs are already well-established, the process can bypass many
early-stage trials, speeding up the timeline for reaching patients in need.10 The Alzheimer’s
knowledge base (AlzKB) has been developed as a computational AD resource with a particu-
lar focus on drug discovery and drug repurposing.7 It integrates data from 22 diverse sources
that spans genes, pathways, drugs, and diseases related to AD to form a specialized open
source graph-based knowledge base to aid discovery of complex translational associations for
AD drug discovery. The nodes denotes entities (such as genes, pathways, drugs, and diseases)
while the edges represent semantic relationships between nodes (entities) such as “chemi-
cal binds gene”, “gene interacts with gene”, “gene regulates gene”, etc. This work leverages
the AlzKB’s information on gene-gene interaction with known AD genes.

Understanding the role and impact of gene interactions on disease phenotypes is increas-
ingly recognised as an essential aspect of genetic disease research.11 Most disease-gene associ-
ation methods do not account for gene-gene interactions, despite their crucial role in complex,
polygenic diseases like AD.2 Exploring the action, function, regulation, and control of proteins
can elucidate a clearer understanding of disease processes, cellular functions, and regulatory
networks.12 This is critical in advancing towards precision medicine, given the necessity of an-
choring therapeutic targets to a disease mechanism substantiated by genetic evidence.13 Many
of the key functions and life processes in biology are maintained to some extent by different
types of protein-protein interactions (PPIs). Knowledge graphs, such as AlzKB, provide a rich
heterogeneous network structure that leverages biological and molecular prior knowledge, to
uncover possible novel gene-gene interactions that could aid the drug repurposing quest for
AD. Drug-gene knowledge sources, such as Drug-Gene interaction database (DGIdb),14 also
provides a rich resource of known interactions between drugs and genes aggregated from mul-
tiple sources. This offers additional insights into the molecular mechanisms of drug actions
and gene functions, aiding in understanding the underlying biology of diseases and outlining
clinically relevant genes.

Machine learning (ML) models in combination with genome-wide association studies
(GWAS) have shown promise for identifying novel genes that confer AD risk.1 To this date,
AD GWAS across multiple populations have identified more than 80 loci, with the majority
studies conducted in European ancestry cohorts primarily due to large sample sizes.4 The best
known genetic risk factor is the inheritance of the ϵ4 allele of the apolipoprotein E (APOE )
gene.15 Other AD candidate genes have also been identified such as amyloid precursor pro-
tein (APP), microtubule-associated protein tau (MAPT ).2,15,16 Though ML models have the
potential to exploit complex genetic interactions and provide insights into AD pathology,
the heterogeneous landscape of AD etiology presents a key challenge.15 Given the complex
biomedical phenotypes that often characterize human diseases, it is becoming increasingly
more accepted that epistatic interactions between genes could be more prevalent than previ-
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ously assumed.17,18 Epistatic interactions can be defined as interactions between two or more
gene loci where the phenotype cannot be accurately predicted by simply adding the effects of
individual gene loci.19 Epistatic interactions have been detected in multiple GWAS of various
disease phenotypes, including AD20 and other neurological diseases.21,22 Due to gaps in the
current understanding of AD etiology and the complex interactions between genomic and other
factors that contribute to its heterogeneity, a multi-modal approach is needed to promote a
better mechanistic understanding of the disease.

We present an explainable ML model enhanced by PPI knowledge, specifically epistatic
interaction, to identify potential novel non-AD genomic variants with drug targets for further
investigation. The underlying hypothesis is that we can leverage the AlzKB and other knowl-
edge sources to pinpoint a set of biologically plausible genes by exploring those with existing
drug targets that exhibit a “gene interacts with gene” relationship with known AD genes in
the knowledge graph. A key novelty of the ML model is integration of biological knowledge
at every level to yield meaningful explanations for model performance and genomic variant
(single nucleotide polymorphism (SNP)) feature selection.

2. Methods

We present an ML explainable model, enhanced by the biological knowledge of epistatic in-
teraction, to identify novel genomic variants that could be biomarkers for AD novel gene-drug
targets. This framework (see Figure 1) consists of three key phases: (i) druggable gene priority
feature selection leveraging AlzKB and DGIdb, (ii) AD study sample data curation, and (iii)
ML feature selection and epistasis analysis.

Fig. 1. Flowchart of overall study design.

2.1. Druggable Gene Feature Selection using AlzKB and DGIdb

The underlying hypothesis of this study is that nominated gene targets for identification of
therapeutic targets for AD can be obtained from the search space of the non-AD genes (i.e.
genes not currently known to be implicated for AD) that exhibit a gene-gene interaction with
known AD genes in the AlzKB and have at least one drug target. The drug target condi-
tion is defined by the edges “chemical binds gene”, “chemical upregulates gene” and “chem-
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ical downregulates gene”. (Note that in this work, AD genes imply all protein-coding genes
directly linked to the “Alzheimer’s Disease” node in AlzKB. ) The “gene interacts with gene”
edges in AlzKB are based on protein-protein interactions.23 82 AD genes were connected to
1,805 non-AD protein-coding genes with drug targets, resulting in a total of 2,835 gene pairs.
The 82 AD genes served as the baseline model gene list for the subsequent ML model analysis.

2.1.1. Priority Druggable Gene Selection based on Drug-Gene Interaction Score

To further prioritize the list of clinically relevant gene selection derived from the AlzKB,
we define an additional gene druggability criteria based on the interaction score metric from
DGIdb.14 DGIdb is one of the most comprehensive resources incorporating knowledge about
genomic modifications, diseases, and therapeutic targets.14 The database utilizes experts cu-
ration and text-mining of an extensive list of over 40 drug, gene, and interaction sources to
extract and rank drug-gene interactions. The interaction score is used to rank the significance
and relevance of interactions between drugs and genes. It is calculated based on evidence
strength (i.e., the strength of the evidence supporting the interaction from various sources),
source credibility, interaction type, the number of supporting sources, and disease relevance.
Hence, we retained (AD gene, non-AD gene) pairs from the AlzKB subset, if and only if,
the maximum value of the interaction score of the non-AD gene exceeded a 75th percentile
threshold (i.e., 11.76 in this work). This yielded a final set of 44 AD genes interacting with
181 non-AD genes, a total of 285 gene pairs (see Figure 2(a) in Results section).

2.1.2. Gene to SNPs Mapping

Ensembl REST API is used to obtain the GRCh38 coordinates for the coding regions of each
gene.24 For each gene of interest, we extract all SNPs located within the regulatory regions
(100kb upstream and 5kb downstream). The baseline model feature set consists of the union of
all the SNPs mapped to each of the 82 AD genes. For the (AD, non-AD) gene-gene interaction
datasets, the SNPs feature set is mapped per AD gene, i.e., the SNPs of the AD gene along
with all SNPs belonging to each of the non-AD gene interacting with that AD gene.

2.2. AD Data Sample and Curation

The AD genotype data utilized in this study is drawn from the Alzheimer’s Disease Sequencing
Project (ADSP).25 The ADSP aims to identify genetic variants that influence the risk of AD by
sequencing the genomes of individuals (from ethnically diverse populations), focusing primarily
on AD case/control phenotypes derived from clinical data. The study sample was extracted
from the ADSP R4 v11 2023 release VCF dataset which originally had 346,763,200 variants
and 36361 samples.

Pre-filtering quality control was done at two levels: at the variant level, based on sequenc-
ing statistics, and at the sample level, based on duplicate samples. To ensure the reliability
of genetic analyses and focus on more impactful genetic variants, additional filtering steps
were performed to remove singletons and exceedingly rare variants. Singletons imply variants
present in only one individual, thus less likely to be relevant to the disease. For exceedingly
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rare variants, the total number of counted alleles is very small relative to the number of
samples. Thus, subsequent analysis focus on variants with enough occurrences to allow for
meaningful statistical analysis. Variants with low call rates (missing call rate > 0.01) and
samples with poor genotyping rates (missing call rate > 0.05) were also excluded. Only com-
mon variants (minor allele frequency (MAF) >1%) were retained resulting in a final variants
count of 9,520,653 and 34971 samples. Imputation of missing values was done using mode-
based imputation to avoid false positive signals as a small set of 400 variants had almost no
homozygous calls.

2.2.1. Population Stratification using Propensity Score Matching

The ADSP R4 v11 2023 release spans 40 study cohorts made up of 5,218 subjects of African
ancestry, 2,791 of Asian ancestry, 10,398 of Hispanic ancestry, and 16,191 Non-Hispanic White.
Thus, another key consideration of the genomic data preprocessing is to insure that any bias
due to population stratification is mitigated before quantitative analysis. Population strat-
ification (PS) refers to the presence of systematic differences in allele frequencies between
subpopulations in a population due to different ancestries. These differences can confound
genetic association studies if not properly accounted for, leading to false associations or mask-
ing true associations between genetic variants and diseases.26 A commonly used method to
address PS is principal components analysis (PCA). This approach uses genotype data (inde-
pendent loci) to compute the principal components, which are assumed to represent features
of genomic ancestry that capture PS. The principal components are then used as covariates in
subsequent analyses. However for complex ML analysis, usage of covariates is not applicable.
To control for PS in this study, we developed a novel method that adjusts the dataset for
ancestral heterogeneity by performing propensity score matching (PSM) on genomic PCA.

To obtain the PCA of the independent genomic loci, we extract a subset of the data based
on these parameters: MAF > 0.02, Hardy-Weinberg Equilibrium (HWE) exact test p-value
> 1e-7, Linkage Disequilibrium (LD) with a variant window count of 100, a step size 10, and
R2 cutoff of 0.1. Subsequently, we apply the PSM procedure using the top eight principal
components derived from the PCA computation. The PSM conducts a logistic regression on
the 8 PCA covariates to compute the propensity score. The matching is performed using psmpy
package.27 A key novelty of the matching process is that it ensures that the individual from
the control subset has its closest counterpart in the disease subset based on the computed
propensity score using k nearest neighbors matching. The final matched dataset (see Table 1)
obtained had 22560 samples equally distributed between AD case and control phenotypes.

Table 1. Demographic summary of cases and controls in the final matched dataset

Female
(%)

Harmonized
Age*

Race (%) Ethnicity (%)

White AA Asian Native/Amer. Ind. Other N/A Hispanic/Latino Non-Hispanic N/A

Cases 60.48 33 to 90+ 66.55 13.95 1.61 0.41 14.73 2.75 26.45 69.34 4.21
Controls 66.33 30 to 90+ 47.81 25.61 1.25 0.33 16.11 8.89 36.54 61.99 1.46

*Harmonized Age: age at onset for cases, and age at last exam for controls (Age values of 90 or more are coded as ”90+”).
Race: uses NIH Racial Categories. AA denotes Black or African American, Native/Amer. Ind. denotes Native Americans and
American Indian/Alaska Native.
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2.2.2. Conditional Splits of AD Data for Robust ML Analysis

The last phase of the AD data curation involved an intentional split of the derived matched
data so that the key fairness characteristics (mitigating population stratification) are not lost
during the ML phase. Building a robust ML classifier model requires training and validation
datasets as well as a test hold out set, that is not seen by the model during the training
and validation phase, to ensure model generalization.28 The two conditions that had to be
preserved and consistent across the splits into three datasets were: (i) Matched case/control
pairs and propensity score distributions, (ii) Distributions of significant SNPs reported by
recent GWAS studies. The set of significant SNPs is based on the 2023 Lancet meta review4

studies that listed 101 unique SNPs with a significance threshold p-value < 5e-8. The variant
filtering for the matched dataset was based on these parameters: MAF > 0.1, HWE exact test
p-value > 1e-7, LD with a variant window count of 100, a step size 10, and R2 cutoff of 0.8.
Note that after the filtering phase, only 30 of the 101 SNPs were present in the matched data.

We designed an optimization algorithm using the Optuna platform29 that satisfied the
specified conditions for dataset splits. This entailed running 1000 Optuna trials by sampling
different random seeds for training, validation and testing sets splits in equal ratio 1/3:1/3:1/3
for the matched case/control sample pairs. During each trial, 2 objectives with equal weights
were evaluated: (i) maximizing the median –log(p) of 30 SNP set across splits; (ii) minimizing
the absolute difference between the median –log(p) of 30 SNP. At the end of the optimization
procedure, the best trial datasets were selected as the training/validation and test sets for
subsequent analyses.

2.3. ML feature selection and Epistasis Analysis

2.3.1. ML AD Case/Control Classifier and Feature Importance

To identify genomic biomarkers that may indicate potential gene-drug targets, we assessed
their predictive power in constructing a ML model for AD case vs control classification using
the ADSP matched data. We performed 44 experiments for the gene-gene interaction sets
using its corresponding SNPs PPI input feature set. Let GAD = gAD1

, gAD2
, ..., gADl

be the
set of AD genes, where l=44. GnonAD = gAD1

, gAD2
, ..., gADm

be the set of non-AD genes,
where m=181. I ⊆ GAD × GnonAD denotes the set of interacting (AD, non-AD) gene pairs;
I = {(gADi

, gnonADj
) | gADi

∈ GAD, gnonADj
∈ GnonAD}, where |I| = 285. Let SNP(g) be the set

of SNPs for gene g. For each AD gene gADi
∈ GAD, its SNPs PPI feature set is the union of

gADi
and the SNPs of all non-AD genes gnonADj

that interact with gADi
, Input SNPs(gADi

) =

SNP(gADi
) ∪

⋃
(gADi

,gnonADj
)∈A SNP(gnonADj

). This is the input data for each of the 44 AD gene

PPI experiments. The baseline performance was determined by building the AD case/control
with the SNPs derived from all the 82 AD genes, G+

AD (see Section 2.1). Baseline SNPs =⋃
gAD∈G+

AD
SNP(gAD).

The AD case/control classifier model was implemented using both automated ML with
tree-based pipeline optimizer 2 (TPOT230) platform and the Extreme Gradient Boosting (XG-
Boost) algorithm.31 TPOT2 allows for the selections of the best-performing ML model for a
given problem in an agnostic manner. The classification pipelines are generated from the sub-
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set of ML methods and data pre-processing operators imported from the scikit-learn Python
library. During the optimization process, various combinations of pre-processing operator are
combined with ML methods into a pipeline in a tree-based manner. XGBoost is a tree-based
model implementation of the gradient boosting framework, which combines the predictions
of multiple weak learners (usually decision trees) to produce a strong overall model. For fair
comparison of both models, the hyperparameters tuning for Xgboost was performed using
Optuna method29 with the objective function set to maximize Receiver Operating Character-
istic - Area Under the Curve (ROC AUC) metric across hyperparameters search space of the
TPOT2 configuration. For both methods, the training and validation datasets were used for
tuning and optimization, and once the final model and hyperparameter set was determined,
the final performance was evaluated using testing set.

To identify which variants were driving the predictive power of each model, we performed
permutation feature importance (PFI) to compute the univariate contribution of each variant
(feature). Note that the PFI coefficient value, which estimates the main effect of each SNP,
was calculated exclusively using the testing dataset.

2.3.2. Epistasis Analysis

The aim of the epistasis analysis was to compute the level of strength of interactions between
SNPs that contribute to the disease, rather than individual SNPs or the additive effects of
SNP subsets. Exhaustive searches of epistatic interactions are computationally expensive due
to the high dimensionality of genomic datasets, We computed the epistatic interaction using
BitEpi, a parallelized bitwise algorithm, which allowed for fast, exhaustive computation of
higher-order interactions between SNPs.32 The genotypes are encoded in bytes (8-bits) with
the first 2 bits denoting the combination (e.g. 0/0 → 00, 0/1 → 01) and the remainder bits set
as 0. Bitwise operations are subsequently applied to combine genotypes of up to 4 SNPs to
create contingency tables and compute the entropy-based metrics (association power (β) and
interaction effect size (α)). The β metric reflects the combined association power of the SNPs
considered, while the α metric indicates the gain in association power due to the epistatic
effect of those SNPs. The α (also known as information gain ) metric quantifies the level of
strength of interaction of the SNP sets. For all SNPs ∈ I gene pairs, we computed α for each
individual SNP (18778 variants) and its two way interactions (176,297,253 SNP pairs) using
the matched testing dataset.

2.3.3. Pooling & Model Interpretation

The final phase of the learning framework pools the results obtained from both the epistatic
interaction analysis and the ML feature selection to determine a final set of potential genomic
biomarkers for AD novel gene-drug targets. Though the ML classification models are able
to assess the predictive power of a set of SNP variants to distinguish AD case from control
phenotype, it may fall short in the explainability phase of the key drivers. Feature importance
scores, as quantified by PFI coefficient scores, are based on main effects of each feature (SNP
in this case). The goal is to extract the list of top ranking SNPs exhibiting relatively strong
level of interactions and assess their predictive power in distinguishing AD case from control
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phenotypes. This will provide additional evidence of their effect on the ML classification
models for each AD gene and its set of interacting non-AD gene pairs.

3. Results and Analysis

Figure 2(a) illustrates the outcome of druggable gene feature selection phase which yielded
285 (gADi

, gnonADj
) pairs.

(a) Network of 285 (AD, non-AD) gene
pairs (gene interacts with gene) filtered by
75th percentile drug interaction score from
DGIdb. Green dots denote the 44 AD genes
while red, the 181 non-AD genes.

(b) Visualization of network of top 5 epistatic in-
teractions, as quantified by information gain using
α values for the main effect and 2-way interactions
from BitEPI in ADSP dataset.

Fig. 2. Visualization of (a) 285 (AD, non-AD) gene pairs, (b) SNPs that exhibit high epistatic
interactions.

Table 2 illustrates the performance of all the AD case/control classification experiments for
both XGBoost and TPOT2 models. Out of the 44 experiments conducted for each of the AD
genes (and its set of interacting non-AD genes), only the top 15 best performing experiments
(based on XGBoost ROC AUC) are listed in Table 2. See Table S1 in Supplementary file a for
complete details of all experimental results. From Table 2, we observe that the baseline model
(union of all SNPs from 82 AD genes) outperformed all the other models, as expected, with
64.23% for TPOT2 model and 63.65% for XGBoost. While the TPOT2 models seemed to have
the better ROC AUC performance overall, the pipelines were very complex and hard to inter-
pret. Hence, based on complexity/performance trade-off, we selected the XGBoost models for
further evaluation of the individual contribution of each SNP variant to overall model perfor-
mance. Among the best performing models, we observe that APOC1, APOE, and TOMM40

aSupplementary information is available at: https://github.com/EpistasisLab/PSB25_ADSP_GIG
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Table 2. AD case/control classification (XGBoost vs TPOT2) performance outcomes
for baseline (all AD genes) model, top 15 gene-gene interaction sets, and subset of
non-AD genes SNPs that exhibit strong epistatic interaction. Gene-gene interaction
sets are sorted by ROC AUC scores from the final XGBoost model.

Gene set # non-AD
genes

# SNPs ROC AUC Recall Precision Accuracy
XGB TPOT2 XGB TPOT2 XGB TPOT2 XGB TPOT2

All AD genes - 9539 63.65 64.23 57.53 58.38 59.70 60.17 59.35 59.87

APOC1 1 57 63.15 64.13 53.16 53.94 60.96 61.98 59.56 60.43
APOE 4 389 63.05 64.10 55.53 52.74 60.50 62.10 59.64 60.28
TOMM40 1 141 62.79 64.18 53.40 52.15 60.30 61.98 59.12 60.08
ESR1 53 3399 60.03 52.28 64.63 54.10 56.95 50.05 57.89 50.05
GSK3B 15 1199 59.59 46.17 62.95 0.00 56.60 0.00 57.34 50.00
APP 64 5256 59.29 49.15 64.04 54.10 56.95 50.05 57.82 50.05
CASP3 15 884 59.04 59.80 62.31 70.59 56.39 56.15 57.06 57.73
DPYSL2 2 269 59.02 59.19 63.38 64.92 55.98 56.21 56.77 57.17
BCL2 10 558 58.98 58.94 62.71 70.72 56.18 55.07 56.90 56.52
A2M 14 1112 58.67 59.39 59.76 61.99 56.33 56.70 56.72 57.33
BAX 7 589 58.53 59.04 61.46 45.96 55.53 50.00 56.12 50.00
WWOX 1 1320 58.46 58.67 63.54 64.12 55.79 56.31 56.60 57.18
INSR 5 468 58.43 59.35 61.89 61.09 55.82 56.77 56.45 57.29
CALM1 11 1878 58.42 59.82 61.14 71.14 55.57 55.28 56.13 56.80
TF 8 593 58.36 59.82 61.81 62.23 55.69 57.51 56.32 58.13

non-AD genes* 104 1867 60.06 49.94 65.21 53.67 57.05 50.01 58.06 50.01

High α SNPs† 6 56 62.92 63.65 60.90 59.15 59.19 60.01 59.45 59.87

*non-AD genes SNPs set selected based on α >0.003 from BitEpi.
†High α SNPs selected based on top 50 α from BitEpi.

PPI gene sets had relatively high performance, though the number of their corresponding
interacting non-AD genes SNPs was very small. This suggests that model performance could
be attributed mainly to SNP(gAD). The gene sets for ESR1, GSK3B, APP, and CASP3 had
a larger number of interacting non-AD genes (and SNPs) and performed relatively well (ROC
AUC of 59− 60%).

Figure 3 reports the PFI values for each top performing gene sets based on the XGBoost
models. For APOC1, APOE and TOMM40 gene sets, SNP rs7259620G has the largest main
effect followed by rs769450G and rs449647A, with PFI values of 0.084, 0.057, 0.09 respectively.
The rs769450G is a known intronic variant associated with AD risk33 . There are limited stud-
ies demonstrating the association of rs7259620G with AD risk.33,34 However, the rs449647A
(TOMM40 intronic variant) currently has no GWAS, functional or clinical annotation avail-
able. For the remaining 12 gene sets, none of the SNPs exhibited an informative contribution
of significant value, with all contributions being less than 1%. Though the performance of
these models is 58 - 60% ROC AUC which is relatively close in performance to the top mod-
els with quantifiable independent effects (APOC1, APOE, TOMM40 ). This suggests that the
driver for the model performance is likely due to the interaction effect of its variants.

Figure 4(a) presents the PFI values for the baseline (SNPs(G+
AD)) model. The SNP with

the highest PFI score, by a large margin, is the same set of three SNPs from the APOC1,
APOE and TOMM40 gene sets (Fig. 3). This provides additional evidence that the key driver
of model performance for those gene sets were most likely due to the already know AD risk
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Fig. 3. Permutation feature importance scores for top 15 gene sets from XGBoost model.

(a) Baseline model (all AD) (b) Non-AD SNPs (α > 0.003) (c) High α SNPs (Top 50)

Fig. 4. Comparison of XGBoost permutation feature importance scores for selected SNPs sets

genomic variants.
The epistasis interaction analysis outcome is presented in Table 3 for the top 15 SNPs

ranked by the information gain of its two-way interaction (α). (see Table S2 in supplemen-
tary file for complete list b). The effect size of the top two-way SNP combinations, while
slightly smaller, was comparable to the top individual SNP effect size indicating that non-
additivity could be a contributing factor in explaining AD genomic mechanism. From Ta-
ble 3, we observe that the strongest pair of interacting SNP variants with α=0.0066 was
(rs7259620G, rs769450G). These two SNPs also had largest main effects (α=0.0096, 0.0053)
and were two of SNPs driving ML performance for the top 3 gene sets (APOC1, APOE and

bSupplementary information is available at: https://github.com/EpistasisLab/PSB25_ADSP_GIG
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TOMM40 ) and baseline model (see Figs. 3, 4(c) and4(a)) (see Table S3 in supplementary
file for complete list of PFI values b). There were also SNPs from non-AD genes that had
strong interaction values: (rs6660157T, rs11164787T α = 0.0064), (rs3851269G, rs11164787T
α = 0.0062), and (rs12133386T, rs11164787T α = 0.006). These were all affiliated with the
non-coding region of the CDC7 gene. A visualization of the network of the 7 SNP vari-
ants involved in the top 5 interactions (see Figure 2(b)) reveals two groups of interactions:
CDC7 non-coding region, and APOE intronic with non-coding TOMM40 intronic regions.
The visualization also reveals slightly weaker interactions (α =0.0012) present for CDC7 non-
coding (rs12133386T, rs3851269G ) and (rs3851269G, rs6660157T ), and for TOMM40/APOE
(rs1305062G, rs769450G).

Table 3. Top 15 epistatic interaction results from BitEpi

SNP A SNP B αAB αA αB βAB βA βB Gene A Gene B

rs7259620 G rs769450 G 0.0066 0.0096 0.0048 0.5162 0.5096 0.5049 APOC1, APOE, TOMM40 APOC1, APOE, TOMM40
rs6660157 T rs11164787 T 0.0064 4.60E-05 0.0002 0.5066 0.5000 0.5002 CDC7 CDC7
rs3851269 G rs11164787 T 0.0063 0.0001 0.0002 0.5065 0.5001 0.5002 CDC7 CDC7
rs1305062 G rs7259620 G 0.0062 0.0053 0.0096 0.5158 0.5053 0.5096 APOC1, APOE, TOMM40 APOC1, APOE, TOMM40
rs12133386 T rs11164787 T 0.0060 3.90E-05 0.0002 0.5062 0.5000 0.5002 CDC7 CDC7
rs11166498 G rs11164787 T 0.0060 6.00E-05 0.0002 0.5062 0.5000 0.5002 CDC7 CDC7
rs12816187 A rs9652000 T 0.0060 0.0001 0.0004 0.5064 0.5001 0.5004 CELA1 CELA1
rs1305062 G rs449647 A 0.0059 0.0053 0.0036 0.5113 0.5053 0.5036 APOC1, APOE, TOMM40 APOC1, APOE, TOMM40
rs2473295 T rs2501275 C 0.0059 0.0006 0.0002 0.5065 0.5006 0.5002 CDC42 CDC42
rs2473296 C rs2501275 C 0.0059 0.0005 0.0002 0.5065 0.5005 0.5002 CDC42 CDC42
rs7529485 C rs11164787 T 0.0059 2.70E-05 0.0002 0.5061 0.5000 0.5002 CDC7 CDC7
rs1883421 C rs2501275 C 0.0059 0.0005 0.0002 0.5064 0.5005 0.5002 CDC42 CDC42
rs12116952 G rs2501275 C 0.0059 0.0006 0.0002 0.5065 0.5006 0.5002 CDC42 CDC42
rs1063116 A rs2501275 C 0.0059 0.0005 0.0002 0.5064 0.5005 0.5002 CDC42 CDC42
rs2501291 G rs2501275 C 0.0059 0.0006 0.0002 0.5065 0.5006 0.5002 CDC42 CDC42

Figure 5 illustrates the estimated AD distribution for using contingency table plots for
selected 2-way interactions with large α values. These plots display the number of samples
for each genotype combinations for the selected SNPs in both case and control cohorts. The
plots for the (rs7259620G, rs769450G) pair have substantially increased AD rate when both
SNP are homozygous for the alternative allele. More complex associations were observed for
(rs6660157T, rs11164787T) pair. Increased AD risk is observed when rs11164787T is homozy-
gous for the reference allele and rs11164787 is homozygous for the alternative allele. When
both rs11164787T and rs6660157T are heterozygous, and when rs11164787T is homozygous for
the alternative allele and rs11164787 is homozygous for the reference allele. Select genotypes
combinations for non-coding region of CDC42 also associated with increased risk of AD: when
both rs760923G and rs760923G are homozygous for the reference allele, when both rs760923G
and rs760923G are heterozygous, and when both rs760923G and rs760923G homozygous for
the alternative allele.

When the SNPs from non-AD genes of meaningful α values from epistasis analysis are
pooled to build the AD case/control classifier, it yields a comparable performance (60.06%
ROC AUC) for the XGBoost model (see last row in Table 2). However, the PFI result (Figure
4(b)) which quantifies the univariate contribution of each SNP (< 2%) to model performance
still fall shorts in explainability of model performance. This provides additional evidence that
the key contributors for model performance is beyond univariate contributions of these SNPs.
The non-additive effects of these SNPs could be a factor.
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Fig. 5. Genotypes combinations for selected SNP pairs with high information gain (α values).

4. Discussion

In this study, we have implemented an ML SNPs feature selection model that integrates
epistatic interaction and leverages the Alzheimer’s knowledge base (AlzKB), Drug-Gene in-
teraction database (DGIdb) to identify a list of biologically plausible novel gene-drug targets
for further investigation. The prior biological knowledge of gene-gene interactions in AlzKB
is based on protein-protein interactions.23 The model is validated using an ethnically diverse
study sample obtained from the Alzheimer’s Disease Sequencing Project (ADSP). A primary
goal of the ADSP is to further the understanding of the genetic architecture of AD and re-
lated dementias and subsequently, turn genetic findings into meaningful therapeutic targets.25

Given the complexity of the dataset fueled by the multiple ancestry in the sample population,
ML analysis directly applied could yield spurious associations that are not related to the dis-
ease mechanism but possible ancestry differences. Hence, a key contribution of this work is
the extensive novel preprocessing steps applied on the AD case/control ADSP genomic data
to mitigate of population stratification. We applied a novel method that combines PCA with
propensity score matching. The mitigation of system bias was validated by computing the
genomic inflation factor using an external GWS study analysis.

The robustness and generalization of the ML model outcomes is enforced by the conduct-
ing conditional splits of the datasets into training, validation and testing sets such that the
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matching benefits are not compromised. Conducting the model performance evaluation, fea-
ture selection, and epistasis analysis exclusively on the test set, increases the confidence in
the generalization and reproduciblity of the results obtained. We utilized two ML methods:
TPOT2, an automated ML tool that explores multiple classification algorithms using genetic
algorithm and selects the most optimal, and XGBoost, a scalable and highly effective tree-
boosting algorithm. Though the TPOT2 performed better overall, subsequent analysis was
done based on the XGBoost models, as they were relatively simple and efficient compared
to the complexity of the TPOT2 pipelines. Permutation analysis of top models revealed that
some SNPs of known AD risk genes are drivers of the performance. Specifically, for the best
performing models (all AD genes, APOE, APOC1, and TOMM40 ) the most informative vari-
ant is rs7259620G located 2KB upstream from the APOE gene region. GWAS with 17,480
European individuals found an association of the APOE rs7259620 G allele with increased AD
risk (OR=1.68, p=2x10-2333). The second high ranking SNP (rs769450G) is a common intronic
variant associated with AD risk. Several large GWAS have also found highly significant asso-
ciations with various traits including AD.33 For the rs449647A, a TOMM40 intronic variant,
there was no GWAS, functional or clinical annotation available. Understanding the functional
implications of rs449647A could potentially shed light on its contribution to disease risk or
progression. However, for other top performing models, the PFI analysis could not quantify
any SNP has having substantial univariate contribution to explain model performance.

To identify whether the genotype combinations can better explain phenotype variance
in these experiments, we ran an exhaustive pairwise epistasis analysis with BitEpi, a highly
scalable and efficient method. Among the combinations of genotypes with strong informative
contributions are previously identified SNPs from intronic and noncoding upstream regions
of APOE and TOMM40, and novel SNPs from noncoding regions of CDC7 (linked to APP
through gene-gene interactions in AlzKb) and CDC42 (linked to A2M through gene-gene
interactions in AlzKb) (see Table 3, Fig. 5). The non-AD gene SNPs haven’t been previously
reported in GWAS studies and do not have any functional or clinically relevant affiliations
with AD. Epistasis analysis uncovered some novel SNPs, not related to the AD genes, which
when pooled into the ML analysis demonstrated comparable predictive power to baseline all
AD genes model (see Table 2, Figure 4(b)). This suggests a biological plausible set of genes
for further investigation as potential drug-target genes for AD.

This work highlights the limitations of basic ML model interpretation methods, which tend
to focus solely on main effects while overlooking impact of epistatic interactions that may
contribute to model performance. Evaluating model-based 2- and 3- way PFI is an exhaustive
procedure and not scalable for high-dimensional genomic data. We propose that integrating
ML analysis with epistasis detection could address this challenge and facilitate advancements
in uncovering disease mechanisms and identifying potential therapeutic targets.”
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