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Alzheimer’s disease (AD) is a neurocognitive disorder that deteriorates memory and im-
pairs cognitive functions. Mild Cognitive Impairment (MCI) is generally considered as an
intermediate phase between normal cognitive aging and more severe conditions such as AD.
Although not all individuals with MCI will develop AD, they are at an increased risk of de-
veloping AD. Diagnosing AD once strong symptoms are already present is of limited value,
as AD leads to irreversible cognitive decline and brain damage. Thus, it is crucial to develop
methods for the early prediction of AD in individuals with MCI. Recurrent Neural Networks
(RNN)-based methods have been effectively used to predict the progression from MCI to
AD by analyzing electronic health records (EHR). However, despite their widespread use,
existing RNN-based tools may introduce increased model complexity and often face diffi-
culties in capturing long-term dependencies. In this study, we introduced a novel Dynamic
deep learning model for Early Prediction of AD (DyEPAD)∗ to predict MCI subjects’ pro-
gression to AD utilizing EHR data. In the first phase of DyEPAD, embeddings for each time
step or visit are captured through Graph Convolutional Networks (GCN) and aggregation
functions. In the final phase, DyEPAD employs tensor algebraic operations for frequency
domain analysis of these embeddings, capturing the full scope of evolutionary patterns
across all time steps. Our experiments on the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) and National Alzheimer’s Coordinating Center (NACC) datasets demonstrate that
our proposed model outperforms or is in par with the state-of-the-art and baseline methods.
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1. Introduction

Throughout the past few decades Alzheimer’s disease (AD), once thought to be a rare dis-
order, has gained recognition as a major public health concern.1,2 According to the survey
data,3 AD affected more than 30 million people in 2015, and it is estimated that this number
could surpass 114 million by 2050. AD causes an irreversible decline in memory, mood, and
behavior, along with difficulties with everyday tasks and other cognitive challenges. Mild Cog-
nitive Impairment (MCI) is a condition characterized by observable cognitive decline, which
is generally considered as not sufficient to effect patients’ daily functioning. More importantly,
MCI serves as a critical stage for identifying individuals at risk of developing AD. Individuals
with MCI are at a higher risk of progressing to AD, with an annual progression rate between
10% and 20%.4 Although, to date, there is no complete cure for AD, there are treatments
to slow AD-related symptoms at their early stages. Therefore, to slow down AD progression
and avoid its worst effects, it is crucial to develop methods for the early prediction of AD in
individuals with MCI.

Many early prediction tools for AD mainly rely on image data, making use of advanced
imaging technologies like MRI, PET scans, and CT scans.2,5–8 However, even though image-
based approaches provide valuable insights, imaging is an expensive method and is not easily
accessible particularly for people in developing countries. Electronic health records (EHR)
consist of temporal sequences of clinical features. The longitudinal nature of EHR enables the
examination of patients’ medical history trajectories. These records have been utilized to train
machine learning (ML) models for classifying and clustering patient data, enhancing clinical
decision-making.9,10 However, traditional ML methods (e.g., Random Forest and SVM) fail
to account for the temporal dependencies in the data sequences.11 An effective method for
capturing the temporal patterns in sequential data is Recurrent Neural Networks (RNN).
However, irregular time intervals between consecutive inputs (i.e., clinical visits of patients),
a common occurrence in EHR, pose a challenge for RNN models.12 When intervals vary,
it disrupts the model’s ability to effectively capture temporal dependencies and may lead
to suboptimal performance. To address this challenge, Time-aware long short-term memory
(T-LSTM)13 has been introduced. T-LSTM modifies LSTM architecture to address challenges
arising from irregular time intervals between clinical visits. Another computational tool, named
Predicting Progression of Alzheimer’s Disease (PPAD),14 utilizes an RNN component where
patients’ ages at the time of clinical visits were utilized to handle varying time intervals
between clinical visits. More recently, time-aware RNN (TA-RNN) has been presented for
early prediction of AD.15 TA-RNN utilizes a time embedding layer that incorporates elapsed
time between consecutive visits to address lack of consideration of irregular time intervals
between consecutive inputs by RNN models.

To enhance graph analysis, Graph Convolutional Networks (GCN)16 has been introduced
as a more efficient variant of Graph Neural Networks (GNN). GCN utilizes a convolution
operation that aggregates information from multiple hops of neighbors. While GCN treats all
neighboring nodes equally during aggregation, Graph Attention Networks (GAT)17 employs an
attention mechanism to learn the importance of each neighboring node. In the context of early
diagnosis of AD, a GNN-based method has been introduced that constructs patient-patient
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graphs using image features from both MRI and PET scans.18 In addition, an interpretable
dynamic graph convolutional networks (IDGCN) integrates dynamic graph leaning into a
GCN architecture to improve the performance of personalized diagnosis for AD and provide
interpretable results.19

Even though these existing tools offer RNN-based solutions for the early diagnosis of
AD using EHR, they have some limitations. In all these approaches, RNN parameters are
updated using the entire sequence of time steps. While this methodology can capture sequential
patterns, it often leads to increased complexity and potential issues with learning long-term
dependencies due to RNN’s structural design. As sequences get longer, they tend to forget
earlier information, making it hard to capture patterns over extended periods. Additionally,
longitudinal data may have hierarchical temporal structures, such as monthly and yearly
patterns. RNN units often struggle to effectively capture these hierarchies. Furthermore, for
long sequences, RNN layers often encounter vanishing or exploding gradient problems, which
complicate the training process.

To address these limitations, in this study, we introduced a novel Dynamic deep learning
model for Early Prediction of AD (DyEPAD). DyEPAD consists of a two-phase training
process. In the first phase, DyEPAD learns latent representations (i.e., embeddings) of patients
at each clinical visit. For this, for each visit a patient similarity network is constructed. In each
graph, the nodes represent patients with attributes derived from the corresponding clinical
visit, and the edges capture the similarities between patients based on these visit attributes.
At each time step, node embeddings of the corresponding graph are learned using a GCN
layer and an aggregation function, which incorporates the node embeddings of the graph in
the previous visit. In the second phase of DyEPAD, spatiotemporal tensor is built by stacking
the embeddings learned in the first phase. Then, tensorial functions are employed to capture
full scope of evolutionary pattern in the data by mapping it into a non-linear feature space
and utilizing frequency domain representations.

We presented our experimental results on the Alzheimer’s Disease Neuroimaging Initiative
(ADNI)20 and National Alzheimer’s Coordinating Center (NACC)21 datasets to predict AD
diagnosis at the next visit and multiple visits ahead. Our experimental results show that our
proposed model outperforms or is in par with the state-of-the-art and baseline methods.

2. Methods

2.1. Preliminaries: Overview of Tensor Algebra

Multidimensional data is defined as arrays of numbers organized in more than two dimen-
sions, commonly known as tensors .22 Unlike traditional data structures such as vectors (1D)
or matrices (2D), tensors extend to higher dimensions, allowing for more complex data rep-
resentations. The dimensions of a tensor are called ways or modes. The number of modes
determines the order of a tensor. If, for example, A ∈ Rm×n×ℓ, then A is a third-order tensor.
Here, m could represent time, n could represent different patients, and ℓ could represent vari-
ous clinical measurements. The definitions presented in this section are fundamentally based
on recent advancements in Fourier theory and the algebra of circulants,23–28 which provide
powerful tools for analyzing multidimensional data. By using tensor-based methods, we can
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better capture and model the intricate relationships across multiple modes, which are often
lost in simpler, lower-dimensional representations like vectors or matrices.

It will be useful to divide a third-order tensor A into different slices and tubal elements as
shown in Fig. 1. In Python notation, A(i) ≡ A[i, :, :] refers to the ith frontal slice; A(i) ≡ A[:, i, :]
refers to the ithe horizontal slice; and A⃗(i) ≡ A[:, :, i] refers to the ith lateral slice.

(a) (b) (c) (d)

Fig. 1. (a) Frontal, (b) horizontal, (c) lateral slices, and (d) tubal scalars of a third-order tensor.

Definition 1. An element a⃗ji ∈ Rn×1×1 is called a tubal scalar of length n. a⃗ji ≡ A[:, j, i] refers
to the jth tubal scalar of ith lateral slice.

Definition 2. Let A ∈ Rm1×m2×m3 be a third-order tensor. Then unfold(A) maps the tensor
A into a m1× (m2 ·m3) matrix by stacking all the tubal scalars as the columns of the resultant
matrix. The operation that takes unfold(A) back to tensor form is the fold command:

A = fold
(
unfold(A)

)
.

Definition 3. Let A ∈ Rm1×m2×m3 be a third-order tensor, and let B ∈ Rm1×m1 be a matrix.
The mode-1 product of A and B, denoted A×1 B, is defined as:

A×1 B = fold
(
B ∗ unfold(A)

)
,

where ∗ denotes matrix multiplication.

Definition 4. The face-wise product multiplies each of the frontal slices of two tensors. Let
A ∈ Rm×n×k and B ∈ Rm×k×ℓ be third-order tensors. Then the face-wise product C = A∆B ∈
Rm×n×ℓ is defined by performing matrix multiplication between the corresponding frontal slices
of A and B as follows:

C = A∆B,

C(i) = A(i) ∗ B(i) for i = 1, . . . ,m.

2.2. Fundamental Tensor Operations

From a theoretical perspective, it is well known that block circulant matrices can be block
diagonalized by using the Fourier transform.29 Therefore, the multiplication, transpose, and
inverse operations on tensors were defined based on block circulant matrices and the Fourier
transform.23–26,30 Most recently, it was shown that these tensor operators can be effectively
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defined by performing an invertible linear transform along all tubal scalars of tensors, con-
ducting pair-wise matrix multiplications for all frontal slices of the tensors in the transform
domain.31 To this end, we will define tensor operators in the so-called transform domain. The
“L” subscript is used to represent any invertible linear transformation.

Definition 5. Let A ∈ Rm×n×k and B ∈ Rm×k×ℓ be third-order tensors. The tensor-tensor
product based on L transform, denoted A ◦L B ∈ Rm×n×ℓ, is defined as:

Ã = A×1 L,

B̃ = B ×1 L,

A ◦L B = (Ã∆B̃)×1 L
−1,

where L is an m×m invertible transformation matrix. L−1 is the inverse of the transformation
matrix. “×1” is the mode-1 product and “∆” is the face-wise product given in Definition 3
and Definition 4, respectively.

Definition 6. If A ∈ Rm×n×k, then the tensor transpose, denoted transposeL(A) ∈ Rm×k×n,
is defined by taking matrix transpose of each frontal slice of A in the transform domain as
following:

B = transposeL(A),
Ã = A×1 L,

B̃(i) = (Ã(i))T for i = 1, . . . ,m,

B = B̃ ×1 L
−1,

where “T” denotes matrix transpose.

2.3. The Proposed Method

Our proposed method, DyEPAD (Fig. 2), employs GCN layers to extract node (patient) em-
beddings from graph-structured EHR data. Each time step (visit) is trained in static network
manner, meaning that the GNN parameters are updated independently based on a specific loss
function for each time step. By doing so, the complexities of training an RNN unit are avoided.
Furthermore, our model incorporates advanced designs, such as dropout, batch normalization,
and mini- batch, which are present in static GNN-based learning methods.32–34 To capture
the evolutionary patterns of the patient embeddings across all time points in EHR, these
embeddings are subsequently subjected to tensor algebraic operations for frequency domain
analysis.

2.4. Graph Convolutional Networks and Embedding Aggregation

In DyEPAD, we construct a patient similarity network for each clinical visit. In this network,
nodes represent patients, and edges encode the similarities between patients based on their
EHR for that specific visit. Additionally, their EHR are also assigned as node features. For
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each clinical visit at time t, DyEPAD utilizes a GCN module to learn node embeddings as
follows:

Ht = σ(D
−1/2
t AtD

−1/2
t XtWt), (1)

for t = 1, 2, ..., n, where n is the total number of graphs (visits), and Xt ∈ Rm×d is the feature
matrix of nodes (m is the number of nodes and d is the feature size). At ∈ Rm×m and Dt ∈ Rm×m

are the adjacency and the node degree matrices, respectively. Wt ∈ Rd×ℓ is the learnable weight
matrix, σ is the activation function, and Ht ∈ Rm×ℓ is the node embeddings matrix. It is
important to note that the hidden layer size ℓ is determined by the column size of Wt. The
adjacency matrix At ∈ Rm×m was constructed using k -nearest neighbors (k was set to 5) based
on cosine similarities between patients’ EHR.

GCN layers of DyEPAD capture embeddings in a given graph-structured EHR at time
step (visit) t. To update the embeddings learned by the GCN layer based on the embeddings

Fig. 2. Graphical illustration of DyEPAD. (a) DyEPAD utilizes GCN layers to derive node em-
beddings from graph-structured EHR data, and subsequently employs aggregation layers (Agg.) to
aggregate the current embedding with those from the most recent previous visit. (b) The derived
embeddings are then processed through tensor algebraic operations for frequency domain analysis,
capturing the complete range of evolutionary patterns.
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of the most recent previous visit, DyEPAD employs an aggregation function. This function
makes the model dynamic by allowing it to adapt and update based on the most recent
visit, thus effectively capturing and reflecting the evolving nature of the data over time. In
traditional RNN architectures, Gated Recurrent Units (GRU) is used to process sequential
data by updating hidden states across all time steps. In our work, GRU was used in a non-
traditional way. Instead of processing sequences as part of an RNN, we applied GRU to
aggregate the current embedding with those from the most recent previous visit as follows:

Rt = sigmoid(HtWir + H̄t−1Whr),

Ut = sigmoid(HtWiz + H̄t−1Whz),

Nt = tanh
(
HtWin +Rt ⊗ (H̄t−1Whn)

)
,

H̄t =
(
(1− Ut)⊗Nt

)
+
(
Ut ⊗ H̄t−1

)
, (2)

where ⊗ denotes element-wise multiplication, Rt ∈ Rm×ℓ is the reset gate, Ut ∈ Rm×ℓ is the
update gate, and Nt ∈ Rm×ℓ is the new state matrices for a given time step t. Wir and Whr are
the parameters for the reset gate. Wiz and Whz are the parameters for the update gate. Win

and Whn are the parameters for the new state. H̄t ∈ Rm×ℓ is the updated embeddings for given
input embeddings Ht ∈ Rm×ℓ (current state embeddings) and H̄t−1 ∈ Rm×ℓ (previous updated
state embeddings).

We then employ two fully connected layers as follows:

p = sig
(
σ(H̄tW̄1)W̄2

)
, (3)

where σ is the activation function for the first layer, and sig denotes the sigmoid activation
function.

To learn model parameters, we use binary cross entropy (BCE) loss function for each time
point. The loss function for a single prediction can be defined as:

Loss = −
(
ylog(p) + (1− y)log(1− p)

)
, (4)

where y is the ground truth binary label (0 denotes MCI, and 1 represents AD labels), and p

is the predicted probability. Adam optimization35 is used as the state-of-the-art for stochastic
gradient descent algorithm.

2.5. Spatiotemporal Tensor Representation of Embeddings

The patient embeddings learned by GCN and GRU in the previous step can be structured as
a spatiotemporal tensor, where the dimensions correspond to time, patients, and patient em-
beddings as shown in Fig. 2(b). This spatiotemporal tensor preserves the intrinsic correlations
present in the data while enabling to capture complex patterns across multiple dimensions.

H(t) = H̄t for t = 1, 2, . . . , n. (5)

H ∈ Rn×m×ℓ is a spatiotemporal tensor where each frontal slice (H(t)) is the patient embedding
matrix at time t (see Eq. (2)). Since there is no aggregation unit at time step 1 (Fig. 2(a)),
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H̄1 is equal to H1 (see Eq. (1)). To process the spatiotemporal tensor, we utilize gram tensors
as described in Theorem 1 as follow:

Theorem 1. Let H(i) ∈ Rn×1×ℓ and H(j) ∈ Rn×1×ℓ be horizontal slices of the spatiotempo-
ral tensor H ∈ Rn×m×ℓ (Eq. (5)). The gram tensor G ∈ Rn×m×m for third-order tensors is
constructed as follows:

k
(
H(i)),H(j)

)
=
(
H(i) ◦L transposeL(H(j)))

)d
,

g⃗j
i = k

(
H(i)),H(j)

)
.

The kernel function applied to H(i) and H(j), denoted as k
(
H(i)),H(j)

)
, results in g⃗j

i which
is a tubal scalar of G defined in Definition 1. This tensorial polynomial function was built
upon on the inner product of two horizontal slices. We used the tensor-tensor multiplication
(Definition 5) and the tensor transpose operation (Definition 6).

Proof. As each frontal slice of the gram tensor is a kernel matrix in the transform domain.

G̃ = G ×1 L (transform domain representation),

It has been demonstrated that the quadratic form αT G̃(t)α is non-negative for all vectors
α ∈ Rm.36,37 As this implies that the frontal slices (G̃(t)) are positive semi-definite in the
transform domain, G̃ is a collection of positive-definite gram matrices.

Each horizontal slice of a spatiotemporal tensor represents a patient. Each tubal scalars
of a spatiotemporal tensor provides a sequence of embeddings over time. In matrix algebra,
inner product of two vector gives a scalar. Each sample (horizontal slice) of the spatiotemporal
tensor can be vectorized and a downstream task can be applied using matrix algebra. However,
vectorizing samples destroys the spatial and temporal correlation within each sample. In our
case, inner product of two horizontal slices provides a tubal scalar, as shown inTheorem 1. By
doing so, we keep all the spatial and temporal correlation within each sample while computing
the inner product between samples.

To learn non-linear patterns by implicitly mapping data into a higher-dimensional space,
we need to construct gram tensors. Let G(1),G(2), · · · ,G(q) be selected q horizontal slices of the
spatiotemporal tensor H (Eq. (5)) for training. Similarly, let K(1),K(2), · · · ,K(w) be selected
w horizontal slices of the spatiotemporal tensor H for testing. Gram tensors for training,
G ∈ Rn×q×q, and for testing, K ∈ Rn×w×q, can be constructed as follows:

G =


k(G(1),G(1)) k(G(2),G(1)) · · ·k(G(q),G(1))
k(G(1),G(2)) k(G(2),G(2)) · · ·k(G(q),G(2))

...
...

...
k(G(1),G(q)) k(G(2),G(q)) · · ·k(G(q),G(q))

 ,

K =


k(G(1),K(1)) k(G(2),K(1)) · · ·k(G(q),K(1))

k(G(1),K(2)) k(G(2),K(2)) · · ·k(G(q),K(2))
...

...
...

k(G(1),K(w)) k(G(2),K(w)) · · ·k(G(q),K(w))

 .
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As outlined in Theorem 1, each frontal slice of a gram tensor is a kernel matrix in
the transform domain. Therefore, G̃ and K̃ represent the transform domain representation
of the gram tensors G and K, respectively. To perform a classification task, we first need to
integrate the multiple kernel matrices (frontal slices) in the gram tensor. To this end, we uti-
lized Easy Multiple Kernel (EasyMKL) learning algorithm.38 EasyMKL employs a minimiza-
tion–maximization learning criterion to determine the optimal weighting of multiple kernel
matrices, thereby maximizing the margin between two classes and improving classification
performance. We want to find the best parameter combinations for the frontal slices of the
gram tensor G̃ by solving:

max
η:||η||=1

min
γ∈τ

(1− λ)ηT y
(( n∑

i=1

ηiG̃(i)
)
y
)T

γ + λ||γ||2, (6)

where y represents the target labels corresponding to visit n+1. We note that the spatiotempo-
ral and gram tensors need to be constructed based on the first n visits. To learn the learnable
parameters in Eq. (6), the target labels of the training set at visit n + 1 were utilized along
with the gram tensor G̃ constructed for training. η is a learnable vector used to weight the
linear combination of the kernel matrices (frontal slices G̃(i)). η is constrained to lie on the
unit sphere. Mathematically, this is expressed as ||η|| = 1. γ is another learnable parameter
that is adjusted to minimize the objective function for a given η. The values of γ need to
be optimized within a constrain set τ . λ (0 ≤ λ ≤ 1) represents a regularization term that
penalizes the magnitude of γ.

As shown in Algorithm 1, to solve the min-max problem, we decomposed the problem
into two stages: first, we addressed the inner minimization problem over γ, and and then we
solved the outer maximization problem over η. We employed convex optimization techniques
to solve the inner maximization problem, utilizing the solvers available in the CVXPY library
for Python. The outer maximization problem was solved using gradient ascent algorithms.
We updated η iteratively (Algorithm 1 line:8) while ensuring it satisfies the unit norm
constraint (Algorithm 1 line:9).

After learning the learnable parameters η and γ, the predictions can be computed for the
test set K̃ as following:

ŷ = (

n∑
i=1

ηiK̃(i))γ,

pj =
1

1 + exp(ŷj)
,

where ŷ is the vector of raw prediction scores, and pj is the probability of the raw score ŷj.
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Algorithm 1 Min-Max Optimization Algorithm

1: Input: Initial vector η, regularization parameter λ, vector y, matrices {G̃(i)}ni=1, constraint
set τ , step size α, tolerance ϵ

2: Output: Optimized vectors η and γ
3: Normalize η ← η

∥η∥
4: while true do
5: ηprev = η
6: Compute γ(η) by solving

γ(η) = argmin
γ∈τ

(1− λ)ηT y

((
n∑

i=1

ηiG̃(i)
)
y

)T

γ + λ∥γ∥2


7: Calculate gradient:

∇ηJ(η) = (1− λ)∇η

ηT y(( n∑
i=1

ηiG̃(i)
)
y

)T

γ(η)


8: Update η:

η ← η + α∇ηJ(η)

9: Project onto unit sphere:

η ← η

∥η∥
10: if ∥η − ηprev∥ < ϵ then
11: Break
12: end if
13: end while
14: Return: η and γ

3. Results

3.1. Datasets

In this study, we utilized longitudinal data from two large AD databases: the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) and the National Alzheimer’s Coordinating Center
(NACC) database.

The ADNI (adni.loni.usc.edu) was launched in 2003 as a public–private partnership, led
by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to
test whether serial MRI, PET, other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of MCI and early AD. Since it has
been launched, the public–private cooperation has contributed to significant achievements
in AD research by sharing data to researchers from all around the world. The NACC, a
comprehensive repository of data from several research sites across the United States, was
specifically designed to aid research focused on understanding, diagnosing, and treating AD.

ADNI and NACC databases include data from cognitive performance tests, MRI scans,
CSF analysis, demographic information, and diagnostic labels. However, only longitudinal
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data were considered in this study, including cognitive performance tests, MRI scans, CSF
analysis, and diagnostic labels that are AD and MCI. We preprocessed the data following
the steps in PPAD method .14 Missing values were imputed using k -NN algorithm, where we
used average values from the nearest k neighbors with the same diagnosis (i.e., MCI or AD),
employing the Euclidean as the distance metric and setting k to 5. To maintain data quality,
we removed visits and features with ≥ 40% and ≥ 60% missing rate, respectively.

For the ADNI dataset, the original dataset comprised 15,087 records for 2,288 distinct
patients, with each record representing a patient visit with 115 features. After preprocessing,
the dataset had 20 longitudinal features for 1,169 patients across 5,759 visits, derived from
cognitive performance tests and MRI scans. CSF analysis features were excluded due to sig-
nificant missing data. For the NACC dataset, the original dataset comprised 172,026 records
(i.e., visits) with 1024 features for 46,513 distinct patients. After preprocessing, the dataset
had 5 longitudinal features for 8,121 patients across 35,423 visits, derived from cognitive per-
formance tests. MRI scans and CSF analysis features were excluded due to significant missing
data. Finally, we focused on patients with at least seven visits for training and model evalua-
tion. This resulted in a final ADNI dataset of 20 longitudinal features for 250 patients and a
final NACC dataset with 5 longitudinal features for 1,414 patients.

3.2. Next Visit Prediction

We trained DyEPAD on longitudinal EHR data to predict conversion of MCI patients to AD
at the next visit. The experiments were performed on ADNI and NACC datasets separately
and the results were compared with the state-of-the-art methods (i.e., GCN, GAT, T-LSTM,
PPAD, and TA-RNN) as well as baseline methods, namely Random Forest (RF) and Support
Vector Machine (SVM). For both datasets, the first six visits were considered to train the
models. We measured the performance of all methods based on the visit number 7. Since RF
and SVM cannot handle longitudinal data, we stacked all six visits’ feature matrices to train
these models. For GNN-based methods, the adjacency matrices were constructed using k -NN
method (see Section 2.4). We evaluated all the methods on ten different randomly generated
training and test splits. The number of patients selected for training was 80% of the total
number of patients, while 20% were used for testing.

Table 1 demonstrates that our proposed approach DyEPAD outperformed all the state-of-
the-art and baseline methods for both datasets for all three evaluation metrics. As outlined
in Section 2.1 and 2.2, any invertible linear transformation can be used for our tensor op-
erations. In our experiments, we used the discrete Fourier transform (DFT)39 and discrete
Hartley transform (DHT).40 Although, both transformations resulted similar predictive per-
formance, compared to the DFT, the DHT has the advantage of converting real functions
into real functions, without the need for complex numbers. Therefore, running DyEPAD with
DHT is more computationally efficient than running DyEPAD with DFT.40

3.3. Multiple Visits Ahead Prediction

In this subsection, we evaluated how well our proposed DyEPAD model performed at pre-
dicting conversion to AD in multiple visits ahead. We compared our results to TA-RNN and
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Table 1. The reported values on ADNI and NACC datasets repre-
sent the averages along with standard deviations, based on ten runs,
for three performance measures, namely: Accuracy, Macro F1 and
Area Under the ROC Curve (AUCROC). Best values are shown in
bold.
Dataset Method Accuracy Macro F1 AUROC

ADNI

SVM 0.594± 0.040 0.570± 0.045 0.572± 0.045
RF 0.566± 0.048 0.550± 0.047 0.550± 0.046
GCN 0.661± 0.032 0.642± 0.033 0.642± 0.032
GAT 0.685± 0.044 0.659± 0.035 0.660± 0.037
PPAD 0.896± 0.035 0.893± 0.036 0.895± 0.034

TA-RNN 0.883± 0.043 0.880± 0.043 0.885± 0.040
T-LSTM 0.819± 0.145 0.778± 0.212 0.806± 0.157

DyEPAD (DFT) 0.900± 0.035 0.895± 0.035 0.896± 0.035
DyEPAD (DHT) 0.898± 0.038 0.893± 0.035 0.894± 0.038

NACC

SVM 0.773± 0.032 0.710± 0.032 0.690± 0.037
RF 0.754± 0.030 0.688± 0.033 0.674± 0.036
GCN 0.797± 0.032 0.742± 0.036 0.723± 0.044
GAT 0.789± 0.035 0.735± 0.037 0.717± 0.042
PPAD 0.950± 0.010 0.892± 0.023 0.878± 0.033

TA-RNN 0.944± 0.011 0.880± 0.024 0.867± 0.031
T-LSTM 0.935± 0.033 0.824± 0.153 0.812± 0.135

DyEPAD (DFT) 0.950± 0.009 0.901± 0.014 0.900± 0.020
DyEPAD (DHT) 0.952± 0.007 0.902± 0.014 0.905± 0.018

PPAD only, as the other methods are not designed to predict multiple visits ahead. All these
methods were trained using the first three, four, and five visits of ADNI and NACC datasets
and evaluated the performance on the seventh visit. The results in Figure 3 illustrate that
DyEPAD performs comparably to the top state-of-the-art methods. In DyEPAD, tensorial
functions operate via a linear transform to capture evolutionary characteristic in the data.
However, applying a transform to a very short discrete signal may fail to capture periodic
components, trends, and other evolutionary characteristics in the data. Therefore, not sur-
prisingly, we observed that the performance of DyEPAD increased as the interval between the
visits decreased. While this finding highlights the potential of DyEPAD, it also underscores
a limitation that the model’s effectiveness may be constrained by the granularity of the in-
put data. In cases where patient visits are infrequent, the model may struggle to capture the
dynamic nature of the underlying processes, potentially affecting its predictive accuracy.

3.4. Ablation Study

To assess the impact of deactivating various components of the proposed architecture on the
model’s performance, we conducted an ablation study. Specifically, to examine the impact
of the tensorial functions and the aggregation layers, we compared the performance of the
proposed DyEPAD architecture with two variants of DyEPAD: 1) we used an identity trans-
formation, instead of the DHT; 2) we disabled the GRU layers and the embeddings were
computed based on the GCN layer at that time point. We conducted the experiments on both
ADNI and NACC datasets according to the experimental settings outlined in Section 3.2. The
results given in Table 2 show that both the frequency domain representation and aggregation
functions were crucial for capturing full scope of evolutionary patterns, as demonstrated by
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Fig. 3. Comparison of the performance of DyEPAD for different scenarios on (a) ADNI and (b)
NACC datasets. Scenario a 7→ b denotes that the first a consecutive visits were utilized to train the
model and bth visit was used for testing.

the superior performance of the original DyEPAD architecture for both datasets. We observed
that for both ADNI and NACC datasets, the effect of the transform domain representation
on the predictive performance was higher than the effect of the aggregation component. An
identity transformation maps any element to itself. This means that we cannot capture any
frequency components or patterns within the data because no change is applied to transform
the data into the frequency domain or any other domain that might highlight such features.
We can still used tensor operators, however the data remains in its original state, preserving its
initial structure and values without revealing underlying periodicity or frequency information
that a transform like the DHT would provide. This suggests that the considering a feasible
invertible linear transformation is crucial in DyEPAD.

Table 2. The average Macro F1 and AUROC scores of different variants of DyEPAD on
ADNI and NACC datasets over ten runs. Best values are shown in bold.

Variants of DyEPAD
ADNI NACC

Macro F1 AUROC Macro F1 AUROC
DyEPAD without any transformation 0.651± 0.071 0.654± 0.072 0.691± 0.019 0.718± 0.024

DyEPAD (DHT) without GRU 0.757± 0.074 0.754± 0.073 0.872± 0.028 0.868± 0.033
Proposed DyEPAD (DHT) architecture 0.893± 0.035 0.894± 0.038 0.902± 0.014 0.905± 0.018

4. Conclusions and Future Work

This paper presents a novel approach for predicting the progression of MCI subjects to AD
using longitudinal EHR. Our proposed method, DyEPAD, captures latent space representa-
tions of EHR at each time step by utilizing GCN and GRU layers. We also use tensor algebraic
operations for frequency domain analysis of these embeddings, capturing the complete range
of evolutionary patterns across all time steps. The experimental outcomes reveal a notable
superiority of DyEPAD over both state-of-the-art and baseline methods for most cases. Fu-
ture work will aim to assess DyEPAD’s performance on additional longitudinal biomedical
datasets and examine the impact of different transformations and aggregation functions on
its performance.
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