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Alzheimer’s disease (AD) is a polygenic disorder with a prolonged prodromal phase, complicating early 
diagnosis. Recent research indicates that increased astrocyte reactivity is associated with a higher risk of 
pathogenic tau accumulation, particularly in amyloid-positive individuals. However, few clinical tools are 
available to predict which individuals are likely to exhibit elevated astrocyte activation and, consequently, 
be susceptible to hyperphosphorylated tau-induced neurodegeneration. Polygenic risk scores (PRS) 
aggregate the effects of multiple genetic loci to provide a single, continuous metric representing an 
individual's genetic risk for a specific phenotype. We hypothesized that an astrocyte activation PRS could 
aid in the early detection of faster clinical decline. Therefore, we constructed an astrocyte activation PRS 
and assessed its predictive value for cognitive decline and AD biomarkers (i.e., cerebrospinal fluid [CSF] 
levels of Aβ1-42, total tau, and p-tau181) in a cohort of 791 elderly individuals. The astrocyte activation 
PRS showed significant main effects on cross-sectional memory (β = -0.07, p = 0.03) and longitudinal 
executive function (β = -0.01, p = 0.03). Additionally, the PRS interacted with amyloid positivity (p.intx = 
0.02), whereby indicating that amyloid burden modifies the association between the PRS and annual rate of 
language decline. Furthermore, the PRS was negatively associated with CSF Aβ1-42 levels (β = -3.4, p = 
0.07) and interacted with amyloid status, such that amyloid burden modifies the association between the 
PRS and CSF phosphorylated tau levels (p.intx = 0.08). These findings suggest that an astrocyte activation 
PRS could be a valuable tool for early disease risk prediction, potentially enabling intervention during the 
interval between pathogenic amyloid and tau accumulation. 
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content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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1. Introduction 
Alzheimer’s disease (AD) is a highly polygenic condition characterized by a neuropathological 
sequence of extracellular amyloid-beta plaques and intracellular neurofibrillary tangles that leads 
to neurodegeneration and cognitive decline [12]. A distinguishing feature of AD is its prolonged 
prodromal phase, during which pathology accumulates well before clinical symptoms manifest [2, 
14]. This prodromal period spans decades of pathological changes prior to the onset of noticeable 
cognitive deficits, making early diagnosis of clinical dementia both challenging and crucial in 
developing precision interventions. Polygenic risk scores (PRS) of AD have displayed some utility 
in predicting the global genetic risk of developing AD [5] yet demonstrate mixed success 
clinically [8, 10, 22, 26]. This may be partly due to the case-control genome-wide association 
study (GWAS) designs used to generate summary statistics that enable PRS calculation, which 
lack the phenotypic specificity needed to move towards precision interventions.  
 
Astrocyte activation plays a varied and complex role in AD, with numerous detrimental functions 
that may contribute to disease pathogenesis including induction of tau hyperphosphorylation, 
impairment of glutamate and ion buffering abilities, and weakening of the neurovascular unit [13, 
15, 16, 28]. Recent evidence has emerged that highlights astrocyte activation as an important 
cellular event linking initial amyloid pathology with subsequent phosphorylated tau accumulation 
[3]. Most notably, recent findings leveraging in vivo measurements of peripheral glial fibrillary 
acidic protein (GFAP), a strong correlate of astrocyte activation, found that high plasma GFAP 
expression, representing a greater degree of astrocyte reactivity, relates to higher AD 
neuropathological burden [3, 29]. This association was most pronounced in amyloid-positive 
individuals [3]. In acute brain injury, astrocyte reactivity is both beneficial and detrimental, 
contributing significantly to post-traumatic tissue repair and synaptic remodeling in conditions 
such as traumatic brain injury and stroke [4] while also facilitating release of pro-inflammatory 
factors that may exacerbate cognitive decline [19]. As such, the level of chronic astrocyte 
activation, particularly in the presence of amyloid pathology, may influence an individual’s risk of 
subsequently developing tau pathology and dementia. Heterogeneity in astrocyte responses to 
trauma, whether acute or chronic, points to genetic factors that may influence the molecular 
response of astrocytes to insult [4, 24]. Consequently, investigating the genetic architecture of 
astrocyte activation in the context of AD may yield insights beneficial in advancing targeted 
interventions for individuals at risk of developing the detrimental effects of long-term reactive 
states.  
 
In this study, we sought to accomplish three main aims: 1) to elucidate the genetic architecture of 
an astrocyte activation phenotype, 2) to build a PRS of astrocyte activation, and 3) to test its 
ability to predict cognitive decline and associations with AD biomarker levels. Using post-mortem 
measures of mRNA sequencing from the dorsolateral prefrontal cortex, we calculated an 
established astrocyte activation transcript signature [33]. Then, we employed this transcript 
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signature as an outcome in GWAS to identify genetic signals associated with the astrocyte 
activation phenotype. Finally, we built a PRS in an independent dataset to test its associations with 
cognitive performance in multiple domains and AD biomarker burden.  
 
2. Methods 
2.1. Participants 
Participants were sourced from two well-characterized cohort studies of aging, including the 
Religious Orders Study/Rush Memory and Aging Project (ROS/MAP) and the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI). Data collection commenced in 1994 for ROS and in 
1997 for MAP, resulting in extensive longitudinal clinical-pathologic data on aging and AD risk 
factors. ROS includes religious clergy members from across the United States, while MAP 
includes individuals from northeastern 
Illinois. Initiated in 2003, ADNI 
encompasses over 1800 individuals 
between 55 to 90 years old, through 
four study phases, with the principal 
objective of validating biomarkers for 
Alzheimer’s disease clinical trial 
applications (http://adni.loni.usc.edu/). 
All participants provided informed 
consent and the studies were carried 
out in accordance with Institutional 
Review Board-approved protocols. 
The Vanderbilt University Medical 
Center Institutional Review Board 
authorized secondary analyses of the 
data. Data were accessed and 
harmonized as part of the Alzheimer’s 
Disease Sequencing Project 
Phenotype Harmonization Consortium (https://adsp.niagads.org/). Please see Table 1 for an 
overview of each cohort’s participant demographics. 
 
2.2. Cerebrospinal fluid biomarker measures 
Lumbar puncture was performed as described in the ADNI procedures manual (http://www.adni-
info.org/). CSF measures of β-amyloid(1–42) were obtained using the xMAP platform and CSF 
measures of total tau and p-tau 181 were obtained using the Elecsys platform. Amyloid positivity 
was defined as CSF β-amyloid(1–42) concentrations lower than 192 pg/mL as outlined previously 
[31].  
 

Table 1. Participant Demographics 
ROS/MAP 

Sample Size 598 
Age at death (years) 81.1 +/- 6.97 
Education (years) 16.53 +/- 3.5 

Astrocyte Activation Z Score 0 +/- 0.61 
Female, no. (%) 391 (65%) 

Amyloid Positive at Autopsy, no. (%) 383 (64%) 
Tau Positive at Autopsy, no. (%) 340 (57%) 

AD diagnosis at last visit, no. (%) 252 (42%) 
ADNI 

Sample Size 791 
Age at baseline (years) 75.31 +/- 7.39 

Education (years) 16.03 +/- 2.84 
Total number of visits 6.32 +/- 2.93 

Longitudinal follow-up (years) 4.89 +/- 3.51 
Female, no. (%) 342 (43%) 

Amyloid Positive at baseline, no. (%) 527 (67%) 
Tau Positive at baseline, no. (%) 385 (49%) 

AD diagnosis at baseline, no. (%) 196 (25%) 
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2.3. Neuropsychological composites 
Harmonized scores representing composite memory, executive function, and language were used 
in the present analyses and have been previously described in detail [25]. Briefly, this 
harmonization process involved experts assigning individual test item‐level data into memory, 
executive function, language, visuospatial, or “none of” domains. Investigators ensured identical 
scoring of anchor items across studies and a confirmatory factor analysis was conducted to choose 
the best single factor or bi‐factor model. Anchor items were items identified as having been 
administered and scored precisely the same way in two or more cohorts. All items had freely 
estimated parameters, with anchor items forced to have the same parameters across studies. We 
used these co‐calibrated parameters for anchor and study‐specific items to generate cognitive 
scores that were on the same scale across cohorts.  
 
2.4. Genetic data quality control and imputation 
For ADNI, genetic data were collected with four arrays (Illumina Human610‐Quad, Illumina 
HumanOmniExpress, Illumina Omni 2.5 M, and Illumina Global Screening Array v2). For 
ROSMAP, genetic data were collected with three arrays (Global Screening Array‐24 v3.0, 
Affymetrix GeneChip 6.0, Illumina HumanOmniExpress). All genetic data were processed using a 
standardized quality control and imputation pipeline [7]. First, variants which had a low genotype 
rate (<95%), low minor allele frequency (MAF<1%) or were outside of Hardy-Weinberg 
equilibrium (p<1×10-6) were removed. Participants were excluded if the reported and genotypic 
sex differed, if there was poor genotyping efficiency (missing>1% of variants), or cryptic 
relatedness was present (PIHAT>0.25). Imputation was performed on the University of Michigan 
Imputation Server using the TOPMed reference panel (hg38) with SHAPEIT phasing [6, 11, 32]. 
Following imputation, datasets were filtered to exclude variants with low imputation quality 
(R2<0.8), duplicated/multi-allelic variants, and MAF<1%. Within the self-identified non-Hispanic 
White racial group, principal component analysis was conducted and genetic ancestry outliers 
relative to a 1000 Genomes reference population (eg. Utah residents with Northern and Western 
European Ancestry [CEU]) were excluded. 
 
2.5. Autopsy measures of DLPFC bulk mRNA expression 
A standardized protocol for post-mortem biological specimens was used consistently across 
centers performing autopsies, as previously described [1]. RNA extraction from specific brain 
regions was conducted using a Qiagen miRNeasy mini kit along with a RNase-free DNase Set for 
quantification on a Nanodrop. The integrity and purity of the RNA were assessed using an Agilent 
Bioanalyzer. Samples with a RIN score greater than five were included for bulk next-generation 
RNA sequencing. 
Sequencing was performed in multiple phases. Phase one focused on the dorsolateral prefrontal 
cortex (dlPFC). Phase two added more dlPFC samples and included samples from the posterior 
cingulate cortex (PCC) and the head of the caudate nucleus (CN). Phase three included additional 
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participant samples from the dlPFC. Detailed information on RNA processing and sequencing is 
available on Synapse (syn3388564). In summary, phase one employed poly-A selection, strand-
specific dUTP library preparation, and Illumina HiSeq with 101 bp paired-end reads, achieving a 
coverage of 150 million reads for the first 12 reference samples. These deeply sequenced reference 
samples included 2 males and 2 females from non-impaired, mild cognitive impairment, and 
Alzheimer’s disease cases. The remaining samples were sequenced with a coverage of 50 million 
reads. Phase two used the KAPA Stranded RNA-Seq Kit with RiboErase (kapabiosystems) for 
ribosomal depletion and fragmentation. Sequencing for this phase was performed on an Illumina 
NovaSeq6000 with 2 × 100 bp cycles, targeting 30 million reads per sample. In phase three, RNA 
was extracted with a Chemagic RNA tissue kit (Perkin Elmer, CMG-1212) using a Chemagic 360 
instrument, and ribosomal RNA was depleted using RiboGold (Illumina, 20,020,599). Sequencing 
for phase three was carried out on an Illumina NovaSeq6000 with 40-50 million 2 × 150 bp 
paired-end reads. 
Data processing and QC of RNA sequencing runs was performed by the Vanderbilt Memory and 
Alzheimer’s Center Computational Neurogenomics Team using an automated pipeline and is 
described in detail elsewhere [30]. Samples whose last visit was >5 years before death or who had 
non-AD dementia were excluded. 
 
2.6. Statistical analyses 
See Figure 1 for an overview of analytical activities. 
 
2.6.1. Astrocyte reactivity z-score calculation 
Methods for generating an astrocyte reactivity z-score were 
derived from procedures reported by Wu et al [33]. Briefly, 
single-nucleus RNA sequencing measures from the dorsolateral 
prefrontal cortices of 24 participants, representing 162,562 
individual nuclei, were clustered into transcriptionally similar 
clusters using a k-nearest neighbor graph. Further 
dimensionality reduction occurred through t-SNE and 
expression of canonical genes, including AQP4 for astrocytes, 
was used to identify cell type clusters. This analysis was then 
repeated within the astrocyte cluster, resulting in ten astrocyte 
sub-clusters. Next, the expression of genes characteristic of 
reactive astrocytes as reported in Zamanian et al [34]., including GFAP, CD44, OSMR, and 
CHI3L1, was surveyed, resulting in the identification of three sub-clusters that displayed high 
expression of all four genes. Differential gene expression was assessed using Seurat to obtain 
marker genes for these activated astrocyte clusters. Genes were required to be expressed in at least 
10% of nuclei in the given cluster and at least log(0.25)-fold difference between the clusters. 

Figure 1. Workflow outlining 
analytical activities.  
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Genes that were significantly over-expressed in reactive astrocytes compared to both other 
astrocyte clusters and all other cells were preserved in the marker gene-set (n=25).  
Next, we obtained normalized bulk mRNA sequence counts from the ROS/MAP dorsolateral 
prefrontal cortex dataset, which did not overlap with the snRNA sequencing dataset used to 
identify reactive astrocyte markers. Four genes were unavailable due to quality control filtering, 
resulting in 21 genes in the final gene set. Participants with values for all 21 genes were included, 
leading to a sample size of 843 individuals. Finally, a summary z-score representing higher or 
lower-than-average reactive astrocyte gene expression was calculated to leverage as an outcome in 
downstream analyses. 

2.6.2. Genome-wide association study of astrocyte reactivity 
Following generation of the astrocyte reactivity z-score, we conducted a GWAS to assess the 
effect of genetic variants on astrocyte reactivity. GWAS were performed with PLINK linear 
association models (v1.90b5.2, https://www.cog-genomics.org/plink/1.9). 646 participants in 
ROS/MAP had both genetic data and an astrocyte reactivity z-score. We excluded a random 
sample of 48 participants from GWAS to later assess the correlation of the astrocyte reactivity z-
score and PRS in these individuals, resulting in a final sample size of 598 participants in GWAS. 
GWAS covariates included RNA-sequencing batch, RNA sequencing sample collection phase, age 
at death, sex, and the first five principal components of genetic ancestry. 

2.6.3. Polygenic risk score generation 
No participants in ADNI were included in the astrocyte reactivity GWAS. First, GWAS variants 
were compared to the ADNI genetic data. Any ambiguous, palindromic variants were filtered out. 
Then overlapping variants between the GWAS and the ADNI genetic data were retained and 
subsequently compared for variants on opposite strands between the GWAS and the genetic data, 
and strand differences were resolved. Then, linkage disequilibrium (LD) clumping was performed 
with PLINK in the ADNI genetic data (r2=0.5, window=250kb), to choose the variant with the 
most significant phenotypic association within each genetically-linked genomic region. Each PRS 
was built with three different P-value thresholds: P=0.01, P=0.001, and P=0.00001, wherein 
variants were included in the PRS only if their phenotypic association was less than the given 
threshold. The LD-clumped genetic data were then leveraged to calculate each PRS with PLINK’s 
profile function which calculates scores as follows: Weights were retrieved from the variant 
associations with AD or with resilience from the respective GWAS. For each variant the given 
weight was multiplied by 0, 1, or 2, based on how many risk alleles an individual possessed. The 
summation of this process results in a summary score for an individual. 
Since APOE polymorphism is a robust risk factor for AD, PRS were calculated with and without 
the APOE region, defined by a 1Mb region up and downstream of the APOE gene. 

2.6.4. Baseline and longitudinal linear association models 
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Fixed effects in our models included baseline age, sex, and the given PRS. Longitudinal linear 



mixed effects models included a PRS-by-interval term, where interval was determined by the 
difference between a participant’s age at each cognitive visit and their baseline age. Additionally, 
linear mixed effects models allowed slope and intercept to vary for each participant. In addition, 
we performed identical sets of models with the addition of a PRS-by-amyloid term in linear 
models and a PRS-by-amyloid-by-interval term for linear mixed effects models, with amyloid 
measured by the CSF Aβ1–42 assay outlined above. Biomarker-based outcomes of our models 
were cross-sectional CSF Aβ1–42, CSF total tau, CSF p-tau 181. Cognition-based outcomes of 
our models were baseline memory, executive function, and language, or longitudinal decline in 
memory, executive function, and language, using linear and linear mixed effects models, 
respectively. We re-ran significant or near-significant interaction models as amyloid-stratified 
models to obtain main effect statistics for amyloid positive (N=527) and amyloid negative 
(N=257) individuals. We also conducted sensitivity analyses using data-driven cutpoints 
determined by Gaussian mixture modeling (GMM) to reevaluate amyloid positivity within our 
sample (amyloid positivity defined as CSF β-amyloid(1–42) concentrations lower than 195 
pg/mL; amyloid positive N = 520, amyloid negative N = 264).  

3. Results
The 21 genes included in the astrocyte activation gene module were positively correlated with one 
another, with the exceptions of ARGHEF3 and ZFYVE28 (Supplemental Figure 1). We 
subsequently ran GWAS to generate summary statistics to be leveraged in the PRS calculation. 
GWAS results highlighted loci on chromosomes 2, 6, 7, and 11 with an acceptable genomic 
inflation factor of 1.0 (Supplemental Figure 2). To evaluate the correlation of each PRS with the 
astrocyte reactivity Z-score, we built the PRS with a variety of p-value cutoffs in a subset of 48 
random participants in ROS/MAP who possessed astrocyte reactivity Z-scores but were excluded 
from GWAS. The correlation was by far the strongest in the PRS with p-value cutoff < 0.01 (0.98; 
see Supplemental Figure 3). As such, subsequent analyses focused only on PRS with this p-value 
cutoff. The correlation between the PRS and astrocyte activation z-score did not differ when 
excluding the APOE region, 
and no strong loci were 
observed in the APOE region at 
the GWAS level 
(Supplemental Figure 2 and 
Supplemental Figure 3). 
Consequently, we leveraged 
PRS which included the APOE 
region in proximate analyses.  

Table 2. PRS Main Effect Model Results
Outcome β p

Memory at baseline -0.07 0.03 
Executive function at baseline -0.02 0.43 

Language at baseline -0.03 0.22 
Longitudinal memory -4.6E-3 0.43 

Longitudinal executive function -0.01 0.03 
Longitudinal language -2.3E-3 0.67 

CSF Aβ1-42 at baseline -3.4 0.07 
CSF total tau at baseline -0.29 0.87 

CSF pTau at baseline 0.68 0.43 
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We then built the PRS in an 
independent dataset and 
evaluated its associations with 
cross-sectional and 
longitudinal cognition as well 
as cross-sectional AD 
biomarker levels, including 
CSF Aβ1–42, total tau, and 
phosphorylated tau. All main 
effects on cognition and 
biomarker outcomes are presented in Table 2 and/or Figure 2. The astrocyte activation PRS had 
significant effects on both cross-sectional memory (Figure 2A) and longitudinal executive 
function (Figure 2B), such that a higher PRS was associated with worse cross-sectional memory 
performance and a faster rate of executive function decline. In addition, the PRS was negatively 
associated with the CSF Aβ1-42 level (Figure 2C), although this result was just below the 

significance threshold.  
 
Next, we performed a series of 
interaction models to determine 
if amyloid status modified the 
effect of the PRS on each 
outcome (Table 3 and Figure 
3). Effects of the PRS on 
annual rate of language decline 
differed across amyloid status, 
and amyloid-negative 
individuals largely drove the 
significant interaction (Figure 
3A). Effects of the PRS on 
CSF phosphorylated tau level 
also differed across amyloid 
status, with the near-significant 
interaction being driven by 
deviations between amyloid-
negative and amyloid-positive 
individuals with higher PRS 

(Figure 3B). Results were consistent across both the predefined amyloid positivity threshold and 
the threshold generated through GMM (Supplemental Figure 4). Together, these results suggest a 
differential effect of the PRS when stratified by amyloid status. 

Table 3. PRS-Aβ1-42 Interaction Model Results 
Outcome β p 

Memory at baseline 3.7E-4 0.46 
Executive function at baseline 2.8E-4 0.54 

Language at baseline 3.7E-4 0.37 
Longitudinal memory -7.9E-6 0.93 

Longitudinal executive function 1.2E-4 0.13 
Longitudinal language 1.9E-4 0.02 

CSF total tau at baseline 1.7E-3 0.96 
CSF pTau at baseline -0.03 0.08 

Figure 2. PRS associations with cross-sectional memory, annual rate 
of executive function decline, and CSF Aβ1–42 level.  

Figure 3. PRS-Aβ42 interactions on annual rate of language decline 
and CSF phosphorylated tau. Interaction model statistical results are 
shown in black while amyloid-stratified main effect statistics are 
shown in colors corresponding to each stratification on the plot. 
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4. Discussion 
The findings from our study underscore the potential of an astrocyte activation polygenic risk 
score (PRS) in the preclinical detection and risk stratification of Alzheimer's disease (AD). 
Together, our results highlight several critical points that add to the growing body of literature on 
the role of astrocytes in AD pathology and suggest practical applications for astrocyte activation 
PRS in clinical settings. 
 
4.1. Genetic architecture of astrocyte activation 
We leveraged an established transcript signature of astrocyte activation to serve as a single, 
continuous outcome in GWAS. Interestingly, the top locus, rs17416058, located on chromosome 
11, is an expression quantitative trait locus in brain for ARNTL (alias: BMAL1), a circadian clock 
gene (Sources: Braineac and BrainSeq databases). Astrocyte-specific deletion of BMAL1 has been 
shown to induce astrocyte activation, indicating a crucial role of circadian rhythm in regulating 
astrocytic gene expression [18]. Furthermore, astrocytes deficient in BMAL1 display an enhanced 
response to amyloid-beta pathology, signaling disease-relevant changes in the face of altered gene 
expression [23]. Carriage of the minor allele is associated with decreased expression of BMAL1 in 
the BrainSeq hippocampus dataset and a higher astrocyte activation transcript signature (β = 0.25, 
p = 1.3E-7), which is in line with the observed direction of effect in the aforementioned biological 
literature. As such, BMAL1 may represent an important genomic locus influencing an individual’s 
degree of astrocyte reactivity, though this finding requires validation in a well-powered dataset.  
 
4.2. Predictive utility of astrocyte activation PRS 
The constructed astrocyte activation PRS demonstrated predictive value for cognitive decline, 
providing a potential genetic tool to anticipate AD progression. The significant associations 
between higher PRS and both cross-sectional memory (β = -0.07, p = 0.03; Figure 2A) and 
longitudinal executive function decline (β = -0.01, p = 0.03; Figure 2B) suggest that individuals 
with a higher genetic predisposition for astrocyte activation exhibit worse cognitive performance 
cross-sectionally and over time. These findings align with previous research indicating that 
astrocyte reactivity exacerbates neurodegeneration and cognitive impairment [9, 17, 27, 29]. 
Furthermore, the negative associations between the astrocyte activation PRS and CSF amyloid-
beta 1-42 levels (β = -3.4, p = 0.07; Figure 2C) provide additional insights into the biological 
underpinnings of AD. Although the result was marginally below the significance threshold, it 
suggests that higher genetic risk for astrocyte activation is associated with lower CSF amyloid-
beta 1-42 levels, potentially reflecting greater amyloid plaque burden in the brain. This association 
aligns with the hypothesis that astrocyte activation is linked to amyloid pathology and subsequent 
neurodegenerative processes [3].  
4.3. Interaction with amyloid positivity 
The interaction between the astrocyte activation PRS and amyloid positivity highlights a nuanced 
understanding of AD pathology. In the case of annual rate of language decline, the significant 
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interaction appears to largely be driven by the effect in amyloid-negative individuals, such that 
higher PRS relates to a slower rate of language decline (Figure 3A). We observed a smaller effect 
in amyloid-positive individuals, though both stratifications aligned with the anticipated directions 
of effect. In the case of CSF phosphorylated tau levels, a stronger effect was also observed in 
amyloid-negative individuals (Figure 3B). However, the difference in the directions of effect 
between amyloid-negative and amyloid-positive individuals drives the near-significant interaction. 
This suggests that the astrocyte activation PRS may identify individuals who are more susceptible 
to tau pathology in the presence of amyloid accumulation and a potential protective effect of 
astrocyte activation in the absence of amyloid pathology. It is plausible that increased astrocyte 
reactivity in the absence of amyloid pathology may lead to decreased neurodegeneration and 
subsequent cognitive decline, as reactive astrocytes are known to excrete various growth factors 
that maintain neuronal and synaptic integrity [20]. However, further interrogating this effect would 
require more precise transcriptional and morphological profiling of reactive astrocytes in the 
presence and absence of amyloid pathology, an area ripe for future investigation.  
 
4.4. Clinical implications and future directions 
The astrocyte activation PRS holds promise as a clinical tool for early AD risk stratification and 
intervention. By identifying individuals at higher genetic risk for astrocyte activation, clinicians 
can better predict the trajectory of cognitive decline and tailor preventive strategies accordingly. 
Furthermore, the PRS can aid in the selection of candidates for clinical trials targeting astrocyte-
mediated pathways, thereby enhancing the precision and efficacy of therapeutic interventions. 
Future research should focus on refining the astrocyte activation PRS by genetically surveying the 
astrocyte activation transcript signature in larger, harmonized datasets to increase statistical power 
at the GWAS level. Validation of its predictive power in large, diverse cohorts would also be 
greatly beneficial. Additionally, exploring the mechanistic pathways linking astrocyte activation to 
amyloid and tau pathology will deepen our understanding of AD etiology and to what extent 
astrocyte activation is genetically regulated. Finally, newer tools allowing for more robust 
quantification of astrocyte activation in vivo using positron emission tomography tracers could 
serve as a complementary approach to the transcript signature leveraged here and increase 
statistical power in future studies [21]. 
 
4.5. Strengths and weaknesses 
Our study has numerous strengths. We leveraged multiple well-characterized, deeply phenotyped 
cohort studies of aging to first determine the genetic architecture of astrocyte activation and then 
validate a PRS in predicting clinically relevant outcomes. Incorporating longitudinal measures of 
cognition and both amyloid and tau biomarker outcomes in our analyses allowed us to survey 
associations across the amyloid/tau/neurodegeneration framework. Despite its strengths, our study 
has notable weaknesses. Primarily, we were underpowered at the GWAS level due to the nature of 
building the astrocyte activation transcript signature from mRNA transcript sequencing from post-
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mortem brain tissue. Harmonization of brain transcriptomics across cohorts will enable higher-
powered analyses in the future. Our study was also limited to individuals of Western European 
ancestry, limiting the generalizability of our findings to more diverse populations. We will be 
better equipped to investigate the utility of an astrocyte activation PRS in diverse populations as 
more data becomes available. In addition, we chose to employ a data-driven approach leveraging a 
previously published transcript signature of astrocyte activation [33]. However, a theory-driven 
approach could provide additional opportunities for discovery. Notably, key astrocyte genes 
known to be upregulated in reactive states were excluded from the transcript signature we used in 
our analyses. Potential candidates include: GFAP, Serpina3n, VIM, AQP4, and Lcn2, which are 
commonly upregulated in reactive astrocytes [34]. Future analyses incorporating such genes into 
the gene module will allow us to evaluate whether the inclusion of additional genes captures more 
of the polygenic architecture of astrocyte reactivity and improves the predictive ability of the PRS. 
Furthermore, the p-value cutoff used for PRS, though strongly correlated with the astrocyte 
activation transcript signature itself, was selected somewhat arbitrarily. This less-restrictive cutoff 
likely includes variants with smaller effects, which collectively may explain a large portion of 
variance in the phenotype. On the other hand, this may increase the risk of overfitting through the 
inclusion of more SNPs. Newer tools that enable fine-tuning of p-value cutoff selection for PRS 
will improve statistical power and predictive ability in future analyses. Furthermore, Since LD 
structure in the dataset used to build the PRS is likely playing a critical role in the relationship 
between the PRS and the astrocyte activation phenotype, assessing different R2 thresholds when 
using meta-analysis results leveraging multiple cohorts will be an important part of future work. 
Finally, none of the observed associations survived correction for multiple comparisons, 
potentially due to the GWAS's power and sample size constraints. This will also be aided by the 
ever-increasing availability of brain transcriptomic measures and genetic data. 
 
4.6. Conclusions 
In summary, our study supports the potential role of an astrocyte activation PRS in predicting 
cognitive decline and AD biomarker burden. These findings emphasize the importance of 
astrocyte reactivity in AD progression and highlight the potential of genetic tools in early disease 
detection and personalized medicine. Further research and validation in well-powered datasets are 
needed to fully characterize the clinical utility of an astrocyte activation PRS in treating AD. 
 
5. Acknowledgments 
Study data were obtained from the Religious Orders Study/Rush Memory and Aging Project 
(ROS/MAP) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). ROSMAP data are 
available at www.radc.rush.edu. ADNI data collection and sharing for this project was funded by 
the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 
AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). 
ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging 

Pacific Symposium on Biocomputing 2025

498



 
 

 

and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s 
Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; 
Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; 
Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company 
Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy 
Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development 
LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx 
Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal 
Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian 
Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private 
sector contributions are facilitated by the Foundation for the National Institutes of Health 
(www.fnih.org). The grantee organization is the Northern California Institute for Research and 
Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the 
University of Southern California. ADNI data are disseminated by the Laboratory for Neuro 
Imaging at the University of Southern California. The present work was further supported by the 
National Institutes of Health under award numbers F31 AG085980, U24 AG074855, R01 
AG059716, and R01 AG073439. The content is solely the responsibility of the authors and does 
not necessarily represent the official views of the National Institutes of Health. 
 
6. Supplemental Material 
Supplemental material is available online at https://doi.org/10.6084/m9.figshare.27181179.v1 
 
 
References 
 
1.  A. Bennett D, A. Schneider J, S. Buchman A, L. Barnes L, A. Boyle P, S. Wilson R (2012) 

Overview and Findings from the Rush Memory and Aging Project. CAR 9:646–663. doi: 
10.2174/156720512801322663 

2.  Amieva H, Jacqmin-Gadda H, Orgogozo J-M, Le Carret N, Helmer C, Letenneur L, 
Barberger-Gateau P, Fabrigoule C, Dartigues J-F (2005) The 9 year cognitive decline before 
dementia of the Alzheimer type: a prospective population-based study. Brain 128:1093–
1101. doi: 10.1093/brain/awh451 

3.  Bellaver B, Povala G, Ferreira PCL, Ferrari-Souza JP, Leffa DT, Lussier FZ, Benedet AL, 
Ashton NJ, Triana-Baltzer G, Kolb HC, Tissot C, Therriault J, Servaes S, Stevenson J, 
Rahmouni N, Lopez OL, Tudorascu DL, Villemagne VL, Ikonomovic MD, Gauthier S, 
Zimmer ER, Zetterberg H, Blennow K, Aizenstein HJ, Klunk WE, Snitz BE, Maki P, 
Thurston RC, Cohen AD, Ganguli M, Karikari TK, Rosa-Neto P, Pascoal TA (2023) 
Astrocyte reactivity influences amyloid-β effects on tau pathology in preclinical Alzheimer’s 
disease. Nat Med 29:1775–1781. doi: 10.1038/s41591-023-02380-x 

4.  Burda JE, Bernstein AM, Sofroniew MV (2016) Astrocyte roles in traumatic brain injury. 
Experimental Neurology 275:305–315. doi: 10.1016/j.expneurol.2015.03.020 

Pacific Symposium on Biocomputing 2025

499



 
 

 

5.  Clark K, Leung YY, Lee W-P, Voight B, Wang L-S (2022) Polygenic Risk Scores in 
Alzheimer’s Disease Genetics: Methodology, Applications, Inclusion, and Diversity. JAD 
89:1–12. doi: 10.3233/JAD-220025 

6.  Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, Vrieze SI, Chew EY, Levy S, 
McGue M, Schlessinger D, Stambolian D, Loh P-R, Iacono WG, Swaroop A, Scott LJ, 
Cucca F, Kronenberg F, Boehnke M, Abecasis GR, Fuchsberger C (2016) Next-generation 
genotype imputation service and methods. Nat Genet 48:1284–1287. doi: 10.1038/ng.3656 

7.  Eissman JM, Dumitrescu L, Mahoney ER, Smith AN, Mukherjee S, Lee ML, Scollard P, 
Choi SE, Bush WS, Engelman CD, Lu Q, Fardo DW, Trittschuh EH, Mez J, Kaczorowski 
CC, Hernandez Saucedo H, Widaman KF, Buckley RF, Properzi MJ, Mormino EC, Yang 
HS, Harrison TM, Hedden T, Nho K, Andrews SJ, Tommet D, Hadad N, Sanders RE, 
Ruderfer DM, Gifford KA, Zhong X, Raghavan NS, Vardarajan BN, Pericak-Vance MA, 
Farrer LA, Wang LS, Cruchaga C, Schellenberg GD, Cox NJ, Haines JL, Keene CD, Saykin 
AJ, Larson EB, Sperling RA, Mayeux R, Cuccaro ML, Bennett DA, Schneider JA, Crane 
PK, Jefferson AL, Hohman TJ (2022) Sex differences in the genetic architecture of cognitive 
resilience to Alzheimer’s disease. Brain 145:2541–2554. doi: 10.1093/brain/awac177 

8.  Euesden J, Gowrisankar S, Qu AX, St. Jean P, Hughes AR, Pulford DJ (2020) Cognitive 
Decline in Alzheimer’s Disease: Limited Clinical Utility for GWAS or Polygenic Risk 
Scores in a Clinical Trial Setting. Genes 11:501. doi: 10.3390/genes11050501 

9.  Ferrari-Souza JP, Ferreira PCL, Bellaver B, Tissot C, Wang Y-T, Leffa DT, Brum WS, 
Benedet AL, Ashton NJ, De Bastiani MA, Rocha A, Therriault J, Lussier FZ, Chamoun M, 
Servaes S, Bezgin G, Kang MS, Stevenson J, Rahmouni N, Pallen V, Poltronetti NM, Klunk 
WE, Tudorascu DL, Cohen AD, Villemagne VL, Gauthier S, Blennow K, Zetterberg H, 
Souza DO, Karikari TK, Zimmer ER, Rosa-Neto P, Pascoal TA (2022) Astrocyte biomarker 
signatures of amyloid-β and tau pathologies in Alzheimer’s disease. Mol Psychiatry 
27:4781–4789. doi: 10.1038/s41380-022-01716-2 

10.  for the Alzheimer’s Disease Neuroimaging Initiative, Schork NJ, Elman JA (2023) Pathway-
Specific Polygenic Risk Scores Correlate with Clinical Status and Alzheimer’s Disease-
Related Biomarkers. JAD 95:915–929. doi: 10.3233/JAD-230548 

11.  Fuchsberger C, Abecasis GR, Hinds DA (2015) minimac2: faster genotype imputation. 
Bioinformatics 31:782–784. doi: 10.1093/bioinformatics/btu704 

12.  Jack CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, 
Trojanowski JQ (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s 
pathological cascade. The Lancet Neurology 9:119–128. doi: 10.1016/S1474-
4422(09)70299-6 

13.  Jiwaji Z, Tiwari SS, Avilés-Reyes RX, Hooley M, Hampton D, Torvell M, Johnson DA, 
McQueen J, Baxter P, Sabari-Sankar K, Qiu J, He X, Fowler J, Febery J, Gregory J, Rose J, 
Tulloch J, Loan J, Story D, McDade K, Smith AM, Greer P, Ball M, Kind PC, Matthews PM, 

Pacific Symposium on Biocomputing 2025

500



 
 

 

Smith C, Dando O, Spires-Jones TL, Johnson JA, Chandran S, Hardingham GE (2022) 
Reactive astrocytes acquire neuroprotective as well as deleterious signatures in response to 
Tau and Aß pathology. Nat Commun 13:135. doi: 10.1038/s41467-021-27702-w 

14.  Johnson DK, Storandt M, Morris JC, Galvin JE (2009) Longitudinal Study of the Transition 
From Healthy Aging to Alzheimer Disease. Arch Neurol 66. doi: 
10.1001/archneurol.2009.158 

15.  Kim H, Leng K, Park J, Sorets AG, Kim S, Shostak A, Embalabala RJ, Mlouk K, Katdare 
KA, Rose IVL, Sturgeon SM, Neal EH, Ao Y, Wang S, Sofroniew MV, Brunger JM, 
McMahon DG, Schrag MS, Kampmann M, Lippmann ES (2022) Reactive astrocytes 
transduce inflammation in a blood-brain barrier model through a TNF-STAT3 signaling axis 
and secretion of alpha 1-antichymotrypsin. Nat Commun 13:6581. doi: 10.1038/s41467-022-
34412-4 

16.  Kim J, Yoo ID, Lim J, Moon J-S (2024) Pathological phenotypes of astrocytes in 
Alzheimer’s disease. Exp Mol Med. doi: 10.1038/s12276-023-01148-0 

17.  Kim J-H, Michiko N, Choi I-S, Kim Y, Jeong J-Y, Lee M-G, Jang I-S, Suk K (2024) 
Aberrant activation of hippocampal astrocytes causes neuroinflammation and cognitive 
decline in mice. PLoS Biol 22:e3002687. doi: 10.1371/journal.pbio.3002687 

18.  Lananna BV, Nadarajah CJ, Izumo M, Cedeño MR, Xiong DD, Dimitry J, Tso CF, McKee 
CA, Griffin P, Sheehan PW, Haspel JA, Barres BA, Liddelow SA, Takahashi JS, Karatsoreos 
IN, Musiek ES (2018) Cell-Autonomous Regulation of Astrocyte Activation by the Circadian 
Clock Protein BMAL1. Cell Reports 25:1-9.e5. doi: 10.1016/j.celrep.2018.09.015 

19.  Li L, Zhou J, Han L, Wu X, Shi Y, Cui W, Zhang S, Hu Q, Wang J, Bai H, Liu H, Guo W, 
Feng D, Qu Y (2022) The Specific Role of Reactive Astrocytes in Stroke. Front Cell 
Neurosci 16:850866. doi: 10.3389/fncel.2022.850866 

20.  Linnerbauer M, Rothhammer V (2020) Protective Functions of Reactive Astrocytes 
Following Central Nervous System Insult. Front Immunol 11:573256. doi: 
10.3389/fimmu.2020.573256 

21.  Liu Y, Jiang H, Qin X, Tian M, Zhang H (2022) PET imaging of reactive astrocytes in 
neurological disorders. Eur J Nucl Med Mol Imaging 49:1275–1287. doi: 10.1007/s00259-
021-05640-5 

22.  Logue MW, Panizzon MS, Elman JA, Gillespie NA, Hatton SN, Gustavson DE, Andreassen 
OA, Dale AM, Franz CE, Lyons MJ, Neale MC, Reynolds CA, Tu X, Kremen WS (2019) 
Use of an Alzheimer’s disease polygenic risk score to identify mild cognitive impairment in 
adults in their 50s. Mol Psychiatry 24:421–430. doi: 10.1038/s41380-018-0030-8 

23.  McKee CA, Lee J, Cai Y, Saito T, Saido T, Musiek ES (2022) Astrocytes deficient in 
circadian clock gene Bmal1 show enhanced activation responses to amyloid-beta pathology 
without changing plaque burden. Sci Rep 12:1796. doi: 10.1038/s41598-022-05862-z 

Pacific Symposium on Biocomputing 2025

501



 
 

 

24.  Monterey MD, Wei H, Wu X, Wu JQ (2021) The Many Faces of Astrocytes in Alzheimer’s 
Disease. Front Neurol 12:619626. doi: 10.3389/fneur.2021.619626 

25.  Mukherjee S, Choi S-E, Lee ML, Scollard P, Trittschuh EH, Mez J, Saykin AJ, Gibbons LE, 
Sanders RE, Zaman AF, Teylan MA, Kukull WA, Barnes LL, Bennett DA, Lacroix AZ, 
Larson EB, Cuccaro M, Mercado S, Dumitrescu L, Hohman TJ, Crane PK (2023) Cognitive 
domain harmonization and cocalibration in studies of older adults. Neuropsychology 37:409–
423. doi: 10.1037/neu0000835 

26.  Oetjens MT, Kelly MA, Sturm AC, Martin CL, Ledbetter DH (2019) Quantifying the 
polygenic contribution to variable expressivity in eleven rare genetic disorders. Nat Commun 
10:4897. doi: 10.1038/s41467-019-12869-0 

27.  Pelkmans W, Shekari M, Brugulat‐Serrat A, Sánchez‐Benavides G, Minguillón C, Fauria K, 
Molinuevo JL, Grau‐Rivera O, González Escalante A, Kollmorgen G, Carboni M, Ashton 
NJ, Zetterberg H, Blennow K, Suarez‐Calvet M, Gispert JD, for the ALFA study (2024) 
Astrocyte biomarkers GFAP and YKL‐40 mediate early Alzheimer’s disease progression. 
Alzheimer’s & Dementia 20:483–493. doi: 10.1002/alz.13450 

28.  Rodríguez-Giraldo M, González-Reyes RE, Ramírez-Guerrero S, Bonilla-Trilleras CE, 
Guardo-Maya S, Nava-Mesa MO (2022) Astrocytes as a Therapeutic Target in Alzheimer’s 
Disease–Comprehensive Review and Recent Developments. IJMS 23:13630. doi: 
10.3390/ijms232113630 

29.  Sánchez-Juan P, Valeriano-Lorenzo E, Ruiz-González A, Pastor AB, Rodrigo Lara H, 
López-González F, Zea-Sevilla MA, Valentí M, Frades B, Ruiz P, Saiz L, Burgueño-García 
I, Calero M, Del Ser T, Rábano A (2024) Serum GFAP levels correlate with astrocyte 
reactivity, post-mortem brain atrophy and neurofibrillary tangles. Brain 147:1667–1679. doi: 
10.1093/brain/awae035 

30.  Seto M, Weiner RL, Dumitrescu L, Mahoney ER, Hansen SL, Janve V, Khan OA, Liu D, 
Wang Y, Menon V, De Jager PL, Schneider JA, Bennett DA, Gifford KA, Jefferson AL, 
Hohman TJ (2022) RNASE6 is a novel modifier of APOE-ε4 effects on cognition. 
Neurobiology of Aging 118:66–76. doi: 10.1016/j.neurobiolaging.2022.06.011 

31.  Shaw LM, Vanderstichele H, Knapik‐Czajka M, Clark CM, Aisen PS, Petersen RC, Blennow 
K, Soares H, Simon A, Lewczuk P, Dean R, Siemers E, Potter W, Lee VM ‐Y., Trojanowski 
JQ, Alzheimer’s Disease Neuroimaging Initiative (2009) Cerebrospinal fluid biomarker 
signature in Alzheimer’s disease neuroimaging initiative subjects. Annals of Neurology 
65:403–413. doi: 10.1002/ana.21610 

32.  Taliun D, Harris DN, Kessler MD, Carlson J, Szpiech ZA, Torres R, Taliun SAG, Corvelo A, 
Gogarten SM, Kang HM, Pitsillides AN, LeFaive J, Lee S-B, Tian X, Browning BL, Das S, 
Emde A-K, Clarke WE, Loesch DP, Shetty AC, Blackwell TW, Smith AV, Wong Q, Liu X, 
Conomos MP, Bobo DM, Aguet F, Albert C, Alonso A, Ardlie KG, Arking DE, Aslibekyan 
S, Auer PL, Barnard J, Barr RG, Barwick L, Becker LC, Beer RL, Benjamin EJ, Bielak LF, 

Pacific Symposium on Biocomputing 2025

502



 
 

 

Blangero J, Boehnke M, Bowden DW, Brody JA, Burchard EG, Cade BE, Casella JF, 
Chalazan B, Chasman DI, Chen Y-DI, Cho MH, Choi SH, Chung MK, Clish CB, Correa A, 
Curran JE, Custer B, Darbar D, Daya M, de Andrade M, DeMeo DL, Dutcher SK, Ellinor 
PT, Emery LS, Eng C, Fatkin D, Fingerlin T, Forer L, Fornage M, Franceschini N, 
Fuchsberger C, Fullerton SM, Germer S, Gladwin MT, Gottlieb DJ, Guo X, Hall ME, He J, 
Heard-Costa NL, Heckbert SR, Irvin MR, Johnsen JM, Johnson AD, Kaplan R, Kardia SLR, 
Kelly T, Kelly S, Kenny EE, Kiel DP, Klemmer R, Konkle BA, Kooperberg C, Köttgen A, 
Lange LA, Lasky-Su J, Levy D, Lin X, Lin K-H, Liu C, Loos RJF, Garman L, Gerszten R, 
Lubitz SA, Lunetta KL, Mak ACY, Manichaikul A, Manning AK, Mathias RA, McManus 
DD, McGarvey ST, Meigs JB, Meyers DA, Mikulla JL, Minear MA, Mitchell BD, Mohanty 
S, Montasser ME, Montgomery C, Morrison AC, Murabito JM, Natale A, Natarajan P, 
Nelson SC, North KE, O’Connell JR, Palmer ND, Pankratz N, Peloso GM, Peyser PA, 
Pleiness J, Post WS, Psaty BM, Rao DC, Redline S, Reiner AP, Roden D, Rotter JI, 
Ruczinski I, Sarnowski C, Schoenherr S, Schwartz DA, Seo J-S, Seshadri S, Sheehan VA, 
Sheu WH, Shoemaker MB, Smith NL, Smith JA, Sotoodehnia N, Stilp AM, Tang W, Taylor 
KD, Telen M, Thornton TA, Tracy RP, Van Den Berg DJ, Vasan RS, Viaud-Martinez KA, 
Vrieze S, Weeks DE, Weir BS, Weiss ST, Weng L-C, Willer CJ, Zhang Y, Zhao X, Arnett 
DK, Ashley-Koch AE, Barnes KC, Boerwinkle E, Gabriel S, Gibbs R, Rice KM, Rich SS, 
Silverman EK, Qasba P, Gan W, NHLBI Trans-Omics for Precision Medicine (TOPMed) 
Consortium, Papanicolaou GJ, Nickerson DA, Browning SR, Zody MC, Zöllner S, Wilson 
JG, Cupples LA, Laurie CC, Jaquish CE, Hernandez RD, O’Connor TD, Abecasis GR (2021) 
Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 
590:290–299. doi: 10.1038/s41586-021-03205-y 

33.  Wu R, Tripathy S, Menon V, Yu L, Buchman AS, Bennett DA, De Jager PL, Lim ASP 
(2023) Fragmentation of rest periods, astrocyte activation, and cognitive decline in older 
adults with and without Alzheimer’s disease. Alzheimer’s & Dementia 19:1888–1900. doi: 
10.1002/alz.12817 

34.  Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012) Genomic 
Analysis of Reactive Astrogliosis. J Neurosci 32:6391–6410. doi: 
10.1523/JNEUROSCI.6221-11.2012 

 

Pacific Symposium on Biocomputing 2025

503




