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Human involvement remains critical in most instances of clinical decision-making. Recent
advances in Al and machine learning opened the door for designing, implementing, and
translating interactive Al systems to support clinicians in decision-making. Assessing the
impact and implications of such systems on patient care and clinical workflows requires
in-depth studies. Conducting evaluation studies of Al-supported interactive systems to sup-
port decision-making in clinical settings is challenging and time-consuming. These studies
involve carefully collecting, analyzing, and interpreting quantitative and qualitative data
to assess the performance of the underlying Al-supported system, its impact on the hu-
man decision-making process, and the implications for patient care. We have previously
developed a toolkit for designing and implementing clinical Al software so that it can be
subjected to an application-based evaluation. Here, we present a visual analytics frame-
work for analyzing and interpreting the data collected during such an evaluation process.
Our framework supports identifying subgroups of users and patients based on their char-
acteristics, detecting outliers among them, and providing evidence to ensure adherence to
regulatory guidelines. We used early-stage clinical Al regulatory guidelines to drive the sys-
tem design, implemented multiple-factor analysis and hierarchical clustering as exemplary
analysis tools, and provided interactive visualizations to explore and interpret results. We
demonstrate the effectiveness of our framework through a case study to evaluate a prototype
Al-based clinical decision-support system for diagnosing pediatric brain tumors.

Keywords: Clinical Decision Making; AI-Supported Interactive Decision Making; Evaluation
Studies; Visual Analytics Framework.

1. Introduction

Artificial Intelligence (AI) can transform healthcare decision-making by quickly analyzing large
amounts of data and improving diagnostic accuracy and patient outcomes.! However, ethical
and legal implications, transparency of Al algorithms, and integration into existing workflows
present challenges that require careful management.’? Although AI has been increasingly
used to support decision-making across various fields, more studies are needed to safely and
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efficiently enhance human judgment and interpretation. Achievieng this goal requires the
evaluation of Al systems on their algorithmic performance and their impact on humanistic
aspects.

A comprehensive and systematic approach is needed to assess the impact of Al on decision
making, particularly in high-risk settings such as healthcare.>* For example, a recent study
demonstrated that GPT-4V frequently presents flawed medical rationales in cases where it
makes the correct final choices regarding the interpretation of radiologic imaging.> Examples
of clinical experts’ interactions with AI systems®7 reveal a gap in understanding AI’s impact
on humanistic aspects of clinical decision-making.

This gap extends to developing objective and precise techniques to evaluate Al technolo-
gies’ safety and predictive precision.® Such evaluation techniques are still a bottleneck in the
translational pipeline from a prototype tool to clinical deployment.® Our research highlights
the substantial challenges related to implementing Al in high-risk decision-making scenarios
within healthcare. We present robust and scalable exploratory analysis methods for evaluat-
ing Al systems and facilitating their broader acceptance and implementation in healthcare
decision-making.

Monitoring clinical Al software effectively ensures performance, compliance, innovation,
and better patient outcomes through data analysis and personalized medicine. Our proposed
framework uses regulatory guidelines and statistical methods to assess system factors. Devel-
oping clinical Al software requires a structured framework: defining the problem, collecting
and preparing data, developing and evaluating the model, and implementing and monitoring
it. This comprehensive approach ensures that the software addresses specific clinical tasks,
uses relevant data, integrates into the clinical workflow, and stays up-to-date.

We introduce a scalable framework implemented as an interactive software solution to
analyze Al’s impact in high-risk clinical decision-making scenarios. Its goals include identify-
ing subgroups, detecting outliers, and supporting compliance with regulations. We integrate
methodologies from multiple fields, including factor analysis, hierarchical clustering, adherence
to regulatory guidelines, and interactive visualizations, to thoroughly analyze and enhance Al
effectiveness in clinical decision-making. An end-to-end evaluation framework can enhance
healthcare decision-making by improving Al’s effectiveness, facilitating its implementation,
and promoting adherence to regulatory guidelines, potentially leading to better patient out-
comes. We demonstrate the utility and effectiveness of our framework through a case study
assessing a prototype Al-based clinical decision-support system for the diagnosis of pediatric
brain tumors.

2. Background

AlI-assistance for Clinical Interpretation on Radiographic Images of CNS
Tumors

As a use case in high-risk clinical decision-making, we look to Al support for diagnosing and
managing central nervous system (CNS) tumors. In this context, experts use demographics,
clinical presentation, imaging, and molecular information® for tumor diagnosis. Al systems
can support efficient detection, diagnosis, staging, prognosis, and treatment planning of brain
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tumors, among other applications.”!® These clincial decisions are only sometimes clear-cut
and can require significant resource allocation. It is generally agreed upon that Al has ample
room to support clinical decision-making in this context.®!'!12 However, when considering
the humanistic aspects of clinical Al support, it is becoming increasingly apparent that Al
has a heterogeneous impact on human decision-makers.®!'2 Human experts may exhibit
automation bias or neglect, where they overweight and underweight the Al prediction relative
to their own, respectively.b Therefore, assessing the effect Al assistance has on decision-makers
at the system level is essential. It is important to note that although AI has the potential
to enhance clinical decision-making significantly, it also brings challenges that need to be
addressed. These challenges include data-related issues, digital inequity gaps, bias, and the
need for robust governance frameworks that balance safety and innovation.!©

Consensus Statements and Guidelines for Clinical Al

In the healthcare sector, specific guidelines have been established to rigorously evaluate the
clinical impact of Al, ensuring standards for transparency and ethical adherence. These guide-
lines contrast with those of other sectors, such as finance. Frameworks such as TRIPOD-AT'3
and CONSORT-ATI'" provide structured recommendations for preclinical and clinical AT trials;
they emphasize standardized reporting and detailed intervention analysis. The DECIDE-AT'?
guidelines serve a critical role in bridging the preclinical and clinical Al trial phases.

DECIDE-AI targets early-stage clinical evaluations of Al-driven decision-support systems,
emphasizing the importance of assessing clinical utility, safety, and ergonomic factors to pre-
pare for broader clinical trials. Developed through international consensus involving experts
from diverse areas, these guidelines are pivotal in ensuring that Al technologies are safely and
effectively integrated into clinical practices. We used DECIDE-AI to drive the design of our
framework, aligning our evaluation methods with best practices for early-stage Al assessment
in healthcare.

Visual Analysis of Qualitative Data

The qualitative data analysis software landscape mainly features commercial products, with
a notable deficit in advanced open-source options tailored for specialized fields such as clinical
Al Although feature-rich, commercial software like NVivo and ATLAS.ti are expensive and
designed for broader use, making them less suitable for niche research areas with limited
budgets and cases.

We introduce a new visual data analysis tool designed specifically for early-stage clinical Al
evaluations to address this gap. It offers a cost-effective, scalable solution for clinical Al studies,
enhancing user-centered evaluations and supporting the development of tailored clinical Al
applications.

3. Analytical Objective, Experimental Data, Regulatory Guidelines, and
Interface Design

We previously presented a framework for designing, implementing, and evaluating clinical Al
tools from an implementation science perspective.'® Here, we introduce a new framework for
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the analysis phase of application-based studies. Specifically, we consider (a) how users can
interact with Al systems to make sense of patient data so that they can make effective care
decisions and (b) how we monitor these Al systems for safety and efficacy (Figure 1).

We emphasize an exploratory and holistic mindset when interpreting the results of Al
evaluation studies. Our framework provides an overview of the data collected in the experi-
ment, complemented by secondary views that can display various facets that detail aspects of
the experimental data. We strive for simplicity and efficiency, integrating a minimalistic user
interface and implementing linked-view mechanisms for seamless visual filtering. Below, we
present the experimental data used to inform our design choices and describe the design of
the primary and secondary views.

Following regulatory guidelines, such as DECIDE-AI, to lead analysis is essential when
developing AT for clinical decision support. Figure 1 depicts some of these guidelines as black-
and-white text boxes. This structured method improves system development, ensures health-
care compliance, and thoroughly evaluates Al integration. It is important for creating efficient,
secure systems. Our framework supports identifying personas and patterns in evaluation data
and aligns with the DECIDE-AT guidelines.

Patient
Characteristics

Interact with Patient Data
and Al System

Make Care Decision

Safety & Error
Assessment

User Characteristics |
~
~
~

AY
[ Human Factors
’

Implementation
Reporting

Al System -
Modifications

.
Human-Computer
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Fig. 1. Conceptual depiction of how users and interactive Al systems come together to make care
decisions while monitoring system performance. DECIDE-AI themes guiding clinical Al evaluation
are shown in black-and-white text boxes.

Analytical Objective: Identifying Personas and Patterns

Our analytical initiative is focused on coarse but comprehensive data exploration. This task
plays a significant role in the initial phases of clinical Al system development to support
identifying user personas and patient subgroups, as well as detecting patterns of human-Al
agreement and disagreement. This exploration aims to guide the development of Al systems
tailored to their users and environments, resulting in more personalized and relevant applica-
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tions. During this stage, it is essential to acknowledge the subtle interactions between users
and Al systems that can yield valuable insights into refining Al algorithms for optimal per-
formance in real-world clinical settings.

Experimental Data

When evaluating Al’s role in clinical decision-making, it is important to adopt a comprehen-
sive approach that considers user-centered design and patient-related data. This approach is
centered around the collection of a broad range of categorical and continuous variables de-
scribing both the performance of the Al system and the interactions of the user with the
system and patient data.

In user-centered design, categorical data (nominal and ordinal) is essential for categorizing
and understanding user interactions and experiences. Nominal data can reveal usage patterns
and tool preferences, such as user roles (e.g., doctors, nurses, administrators) and Al tool types
(e.g., diagnostic aid, treatment planner). Ordinal data, such as user satisfaction ratings or task
difficulty levels, can provide insight into the usability and effectiveness of Al tools. Meanwhile,
continuous data, including interval and ratio data, provide quantitative user engagement and
tool performance measures. Interval data, such as response times or system up-time, and ratio
data, such as usage counts, session lengths, or error rates, provide precise metrics to track
changes over time or after modifications.

In addition to user-centered data, it is equally important to gather patient-related data.
Categorical patient data, such as diagnosis (e.g., Central Nervous System (CNS) tumor),
treatment type (e.g., surgery, radiation therapy, chemotherapy), and genetic markers, offer
essential insights into the patient’s health status and the complexity of their case. Similarly,
continuous data points such as tumor size, biomarker levels, and treatment response (e.g.,
tumor size changes or patient symptoms over time) play a pivotal role in providing precise
and quantifiable measures of the patient’s condition and treatment progress.

Taking into account both user and patient data, the Al tool can be designed to provide a
more holistic and personalized user experience. It can cater to the user’s specific tasks, such as
diagnosing a CNS tumor or monitoring a patient’s response to treatment, thereby enhancing
the tool’s effectiveness and usability in the clinical setting. This comprehensive data collection
and consideration approach is fundamental in the user-centered design and evaluation of Al
tools in clinical settings. It ensures that the tool meets the user’s needs and improves patient
outcomes, which is the ultimate goal of healthcare delivery. Thus, collecting and considering
diverse data types is fundamental in evaluating and optimizing Al in a clinical setting. It also
aids in mitigating biases and improving the fairness and equity of Al-driven clinical decisions.

Themes of Regulatory Guidelines Driving the Design

To achieve our analytical objective, we lean on the themes and guidelines in the DECIDE-AI
framework.'® Each theme is tailored to glean critical insights during the early phases of Al
system development and deployment in healthcare settings. The remainder of this subsection
provides a summary of each of these themes.
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User Characteristics Analysis. This theme involves collecting and assessing demographic
and clinical data from healthcare providers to develop practical Al solutions that meet diverse
user needs. This strategy enhances the system’s versatility and facilitates its acceptance and
integration in clinical settings. The theme aligns with DECIDE-AI guidelines 9A and 9B.

Implementation Reporting. This theme analyzes user interaction with the Al system and
its impact on clinical workflows, focusing on user engagement and system acceptance. The
goal is to ensure that the Al improves existing workflows and is easily integrated into clinical
settings. This theme aligns with DECIDE-AI guidelines 10A and 10B.

Al System Modifications. To maintain the Al system’s effectiveness and meet its users’
needs, it is imperative to document all modifications made during the study and analyze their
impact on the system’s outcomes. This theme is essential for the system’s continued evolution
and clinical efficacy. It corresponds with DECIDE-AI guideline 11.

Human-Computer Interaction Assessment. This theme assesses user agreement and com-
pliance with AI recommendations, focusing on improving trust and system reliability. By
analyzing deviations, developers can refine the Al to better meet user expectations and en-
sure its recommendations are practical for integration into daily operations. This theme aligns
with DECIDE-AI guideline 12.

Safety and Error Analysis. This theme focuses on identifying and addressing errors, mal-
functions, potential risks, and observed harm in the AI system to safeguard patient safety.
Vigilant monitoring and mitigation ensure compliance with healthcare regulations and ethical
technology deployment in clinical settings. This theme aligns with DECIDE-AT guidelines 13A
and 13B.

Human Factors Analysis. This theme combines usability testing and learning curve eval-
uations to ensure the Al system is practical and accessible from initial use to complete com-
petence. Meeting practical needs and improving user experiences provides high user adoption
and satisfaction and aligns with DECIDE-AI guidelines 14A and 14B.

Due to space constraints, we focus on the themes of Implementation Reporting, Human-
Computer Interaction Assessment, and Human Factor Analysis in the remainder of this paper.

Interface Design

This section outlines our interface design, which follows a top-down conceptual approach.
The Ul is organized into primary and secondary views, creating a light, focused layout that
enhances interaction. This hierarchical structure improves user efficiency by providing coarse
overviews and allowing granular analysis of selected topics. Interactive views enable dynamic
data filtering, enriching the user experience with structured navigation and focused content.

Design of Primary View. Figure 2 shows an example of the primary view, detailed in
the case study in Section 4. Our visual analytics framework supports a two-stage, top-down
analytical process for handling complex clinical datasets. The initial analysis uses a full-screen
plotting window for broad pattern recognition and preliminary insights.

The primary view is configured with interactive functionalities to transition to the finer
data exploration phase. These include dynamic linking capabilities between primary and sec-
ondary data views and providing contextual information via tooltips. Such features are in-

45



Pacific Symposium on Biocomputing 2025

MCA Bi-plot

Dim2

o]

\ B

. g

1
L

O
B i g

Dim1

Fig. 2.  Overview of the primary view displaying a factor analysis (i.e., MCA) bi-plot of clinical Al
user study experimental data. (a) Legend for the plot depicting entities and variables within the study
dataset. Entities and variables are annotated based on whether they are a user, Al agent, patient,
decision-making task, demographic, or survey value. (b) The Formatting panel controls the display
of the primary view and the appearance of marks. Marks are currently double-encoded for color and
shape, showing variable categories. (c) The Tools panel contains buttons to toggle secondary views.
The buttons are organized according to DECIDE-AI guidelines. (d, ) Examples of participants that
represent 2 Personas. (f) Grouping of Al-predicted and Al-ground truth values.

dispensable for users focusing on detailed data inspections, where precision in isolating and
scrutinizing data segments is necessary. Interactive tools like zoom, adjustable filters, and
data point selection (rectangular or lasso) enhance query specificity, streamline workflows,
and deepen analysis.

The minimalist toolbar of the interface, shown adjacent to Figure 2a on the left side, main-
tains simplicity by housing navigational buttons like project, formatting, tools, and help. This
design choice preserves an intuitive navigation structure while supporting extensive function-
ality, minimizing cognitive load for the analyst.

For this example, our primary view layout is determined using multiple correspondence
analysis (MCA). This type of factor analysis optimally suits the assessment of nominal cate-
gorical data like surveys. We expand on other factor analyses in our Discussion below. Using
a unified graphical interface with dual-coding (glyphs and colors) helps understand the rela-
tionships between clinicians’ behaviors, patient data, and Al insights.

The configuration of the primary view (Figure 2b), therefore, elevates the analytical ca-
pabilities required in clinical settings and aligns with rigorous academic data processing and
visualization standards. Designing to meet users’ operational and cognitive needs supports
nuanced data exploration, which is essential for advancing Al in healthcare and evaluating its
impact on clinical decision-making.
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Fig. 3. Comparative Analysis of User Sessions and Al Interactions. (a) This panel illustrates in-
teractions across two distinct sessions, capturing surveys, administrative actions (e.g., ‘Next’ button
clicks), and specialized tasks (e.g., survey responses). The utility of Al features is examined through
variations in image viewing (Barco Update Target) and Al button use, indicating differing reliance
on Al tools between sessions. (b) This diagram shows a trend of decreasing task completion times,
indicating improved user proficiency with system utilization over the session. (c) A heatmap high-
lights alignment and discrepancies in decision-making annotations between Al predictions, Al ground
truth, and user selections. This visualization is instrumental in evaluating the AI’s alignment with
user decisions and overall influence on decision-making.

Design of Secondary Views. The secondary views in our visual analytics framework
are intricately designed to complement the primary view by providing enhanced functionality
for detailed and task-specific analysis, as illustrated in Figure 3. These views, which can be
triggered from the toolbar menu (Figure 2c) have been developed with particular considera-
tions to support the themes within DECIDE-AI required to effectively evaluate Al interactions
within clinical contexts.

The decision to implement popup windows for secondary views is purposeful. It is designed
to preserve the primary interface’s clarity while enabling access to advanced data inspection
when required. This approach allows users to engage with complex data sets without cluttering
the primary view, facilitating user-controlled complexity in the visualization environment.
Such a design is critical for tasks requiring focused analytical attention on specific data subsets
while maintaining sight of the broader analytical context.

The secondary views utilize responsive SVG display widgets, which are pivotal for the
dynamic visualization of intricate, multi-dimensional data typical in clinical analytics. These
widgets are essential for detailed data relationship analyses, especially for interactions between
patient data and Al outputs, as they allow users to interactively manipulate visual elements.

The ability to resize and reposition popup windows empowers users to tailor the analytical
workspace to their specific needs or preferences, enhancing the ergonomics of data analysis.
This flexibility is essential during analyses such as cross-referencing multiple data sources or
adjusting visual layouts to better interpret data correlations and trends. Combining secondary
views with the primary view allows for both broad and detailed questions to be addressed
simultaneously.
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4. Case Study

To demonstrate our framework, we used data from a previously conducted evaluation study
of a prototype Al-based clinical decision-support system for the diagnosing pediatric brain
tumors. For context, we summarize the system and study here; details are provided in our
previous work.!”

Development and Evaluation Study of Interactive AI Clinical Decision
Support Software

User Interface and Radiology Workstation Simulator. We collaborated with clinical partners
in a step-by-step design study, collecting visualization samples, conducting user interviews,
and improving designs based on feedback. In the initial phase, we used visualizations to
display the performance of the AI model. In the second phase, we visualized predictions
for clinicians using existing tools and conducted a user study. After immersing ourselves in
the clinical environment, we refined our task specifications and created initial prototypes in
the third phase. Finally, we built a radiology reading terminal and implemented basic Al
interfaces as web applications in the fourth phase. Additional details are provided in our
previous publication.'®

Al Model Backend. The study used the ATPC50 dataset from the Advancing Treatment for
Pediatric Craniopharyngioma (ATPC) international multi-institutional consortium in North
America, which included information from 50 ACP patients.!” The study focused on patients’
initial presentations, utilizing imaging data from preoperative CT and MRI scans, with radio-
graphic features annotated by a certified neuroradiologist. The Al model thoroughly prepro-
cessed DICOM inputs by resizing images, adjusting contrast, and simulating different patient
positions. The data was rescaled to the JPEG range and then processed using ResNet V2
techniques. The study also included using a variational autoencoder for data reconstruction
and deep learning classifiers for diagnostic analysis.!”1

Experimental Study Design. The study recruited six post-residency faculty attending clin-
icians (three females and three males) from Children’s Hospital Colorado, focusing on those
specializing in neurosurgery and neuroradiology. Participants were recruited via email and
scheduled for individual 30-minute sessions over a two-week period to accommodate their
busy schedules.

At the start of each session, participants shared demographic information, were introduced
to the study’s goals, and completed the Subjective Numeracy Scale (SNS) survey. They then
received a step-by-step guide to the Al decision support tool through ten instructional slides.
Participants used radiologic images of CNS tumors to annotate an 11-point feature profile
of a pediatric CNS tumor known as Adamantinomatous Craniopharyngioma, both with and
without Al support. These feature profiles were completed within the software as a form with
checkboxes.

Participants engaged with Al in two forms. The first was a passive Al assistant that flagged
a checkbox if the user selected a value that was different from the AI prediction. The second
was a direct Al assistant that provided users with the Al-predicted feature profile and a list
of other patients that the AI model suggested were similar, based on L1 distance between
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prediction vectors. At the end of the session, participants provided feedback by completing
the System Usability Scale (SUS) survey. We collected survey data, feature predictions, and
system interaction logs.

Exploration and Interpretation of Data from the Evaluation Study

We now describe how our new framework for assessing interactive Al for clinical decision
support was used to analyze the data collected in our evaluation study.

Our analysis, which encompassed survey responses and system interaction logs, distin-
guished two primary user personas: the "Tech Novice Numerate’ (Figure 2d) and the 'Confi-
dent Numerate’ (Figure 2e). The "Tech Novice Numerate’ users displayed moderate numerical
skills but struggled to navigate the Al system, indicating a pressing need for improvements in
interface design and enhanced user training. In contrast, the 'Confident Numerate’ users, who
demonstrated high numerical proficiency, expressed concerns about the system’s consistency,
suggesting potential reliability and user acceptance issues.

An in-depth examination of the utilization of Al tools revealed significant variances in the
degree of dependency on Al support, as observed through differential usage of the "Barco Up-
date” feature for additional image views and ” Al button” interactions. Additionally, a chrono-
logical analysis of task completions, encompassing SUS, SNS, and Feature Form responses,
shed light on the users’ learning trajectories and the system’s adaptability throughout the
session.

In Figure 2f, the overlay of points for Al predicted values and the Al ground truth suggests
a high degree of agreement between the Al model’s predictions and the annotations made by
a board-certified clinical expert, considered the 'ground truth’ in this context. This expert is
highly skilled and certified in the task at hand within this specific use case.

The fact that the Al model aligns closely with the ground truth annotator indicates that
the model has learned to mimic the decision-making process of this particular expert quite
accurately. However, it is essential to note that this expert may have interpretations that
differ from other experts in the field. This is a common occurrence in many professional fields,
including clinical practice, where different experts may have slightly different interpretations
or approaches based on their training, experience, and personal biases.

Collaboration among human experts in clinical practice is crucial. Discussing interpreta-
tions with colleagues can help reach a consensus or understand different viewpoints, which can
help mitigate discrepancies between different human experts. This collaborative approach is
particularly important in the context of the figures, as it can help reconcile differences between
the annotations that fall into Figure 2f (where the Al and the ground truth annotator agree)
versus those in Figure 2d or 2e (where there may be disagreement).

Understanding potential biases in the Al model is essential for evaluating clinical Al de-
vices in real-world settings. If the Al model consistently aligns with one expert (the ground
truth annotator, in this case), it may indicate that the model is biased towards that individ-
ual’s interpretations. These models need to generalize well across different experts and not
just mimic the decisions of one individual.
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This granular analysis of user-system engagement deepens our understanding of behavioral
dynamics and provides actionable insights for targeted enhancements in Al system design and
interface. These empirical findings emphasize the critical role of user-centered design in de-
veloping intuitive and reliable clinical decision-support tools, enhancing system functionality,
and fostering greater user trust and satisfaction in healthcare Al applications.

5. Discussion and Lessons Learned

Integrating Al in decision-making across high-stake sectors underscores a transformative shift
towards data-driven practices. However, deploying these Al systems, particularly in sensitive
areas such as healthcare care, requires an approach that couples algorithmic insights with
indispensable human judgment. The predominant reliance on commercial products often leaves
gaps in affordability and customization, especially in specialized fields such as clinical Al
By introducing a visual analytics framework purposely built for clinical Al applications, we
propose a solution tailored to meet these unique requirements. Our framework can advance
analysis capabilities by interpreting data from clinical user studies and increasing accessibility
and practical relevance, reducing dependency on costly and often overly complex tools.

Consideration of the humanistic aspects of clinical AI evaluation is essential
for several reasons. Real-world scenarios vary significantly from controlled experiments,
making evaluating Al tools with diverse patient populations and varying data quality across
discrete clinical tasks to ensure their generalizability. Evaluations help to identify and mitigate
biases inherent in healthcare systems, ensuring fairness and equity. Real-world testing is vital
in revealing potential safety issues and unintended consequences, guaranteeing that Al tools
perform accurately and reliably in clinical settings. Furthermore, realistic evaluations consider
how Al integrates into existing workflows, including integration challenges, user experience,
and impact on efficiency. Involving clinicians and patients in the evaluation process provides
valuable insights into user acceptance, trust, and willingness to adopt Al tools, informing
necessary improvements. Finally, adhering to regulatory guidelines, such as DECIDE-AI, sig-
nificantly enhances the robustness and generalizability of clinical AI tools by emphasizing
fundamental principles. These include risk assessment and benefit analysis in real-world con-
texts, encouraging external validation and independent testing, assessing clinical utility, and
promoting transparency through clear documentation.

Basing a clinical AI evaluation method on factor analysis can enhance scala-
bility and accommodate diverse data types. Evaluative efforts for clinical Al systems
can generate a large volume of multiple data types. Empirical tools used in this field often
involve survey methods that can gather character descriptions of users (e.g., demographics),
information about system usability and a way to measure how well users can complete the
specific task supported by the system. In addition, continuous numeric data is also relevant in
this space with aspects like predictive probabilities from the Al model, system response time,
user interaction metrics, and human error rates. Understanding and considering all aspects
of the evaluation, including patient data, human expert judgment, and Al software inter-
actions is important. This comprehensive understanding is what produces robust tools that
fundamentally improve patient care.

50



Pacific Symposium on Biocomputing 2025

Factor analysis is a method for identifying latent factors, or underlying variables, in ob-
served data. Factor analysis uses the correlation structure amongst observed variables to model
fewer unobserved, latent variables known as factors. Researchers use this statistical method
when subject-area knowledge suggests that latent factors cause observable variables to covary.
For instance, we can evaluate an expert’s diagnostic prediction using patient data accessed in
software and compare it to the validated diagnosis. The prediction may need to be corrected
due to unobservable software interaction patterns, which are observable in factor analysis. By
capturing shared variance, it simplifies complex relationships among variables, aiding in the
simplification of data analysis. This method is also scalable, enabling the efficient handling of
large datasets by reducing dimensionality and making computations more manageable.

Factor analysis can accommodate diverse data types, including continuous and categorical
data, allowing for incorporating survey responses (categorical) and continuous data into factor
models. For example, Multiple Factor Analysis (MFA) is a multivariate method used to study
tables where a group of individuals is described by a set of variables, which can be quantitative
and qualitative and are structured in groups. It is an extension of Principal Component
Analysis (PCA) for quantitative variables, Multiple Correspondence Analysis for qualitative
variables, and Factor Analysis of Mixed Data for variables that belong to both types.

We implemented factor analysis using MCA for our framework because the data from
our evaluation study were mainly qualitative. However, many other factor analysis methods
are available, such as nonlinear PCA, which handles mixed data types more effectively.?? The
selection of the factor analysis method is flexible, and we will explore this area further in future
work to identify more sophisticated representations of this complex experimental context.

Effectively evaluating Al requires a delicate balance between realism and con-
trolled experiments to ensure robustness and practical applicability. Multiple facets
are involved in ensuring robust clinical Al software. One approach starts with simulated envi-
ronments to understand fundamental behavior in controlled settings, allowing for controlled
variation while maintaining reproducibility and gradually transitioning to real-world data.
Standardized benchmark datasets can provide a baseline for performance comparison in con-
trolled experiments, although it is essential to recognize their limitations in representing real-
world complexity. Another valuable strategy is transfer learning, which entails training models
on controlled data and fine-tuning them on real-world data to bridge the gap between con-
trolled and realistic contexts. Field studies conducted in clinical settings with actual users are
essential for observing how Al tools impact workflows, patient outcomes, and user satisfaction.
Adversarial testing is also important, introducing realistic challenges such as noisy data and
adversarial attacks during controlled experiments to reveal vulnerabilities and test robustness.
When used collectively, these strategies contribute to a comprehensive and balanced approach
to Al evaluation. This approach ensures that all aspects of Al performance are thoroughly
tested and evaluated, providing a fair and thorough assessment of the system’s capabilities.

An example of the need to consider the reality of deployment in contrast with controlled
experiments and statistical analysis can be seen in our study. Factor analysis is useful for
evaluating user studies, especially with structured questionnaires and surveys. It identifies re-
lationships between variables, simplifies data, and highlights key factors influencing responses.
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This helps researchers understand patterns in feedback and make informed decisions about
tool design and functionality. However, it mainly focuses on statistical relationships and might
miss nuances in user interactions. For example, in our study, all participants consistently ex-
perienced passive Al, but active Al was less used, likely due to the flawed concept requiring
comparisons without prior knowledge. This added complexity and confusion, which would not
be evident through factor analysis alone. To address such issues, deeper qualitative investi-
gations are necessary. These can include user interviews, observational studies, and detailed
feedback sessions to understand the context and reasons behind user behaviors. This approach
provides richer insights beyond statistical analysis, ensuring that AI tools are usable and prac-
tical in clinical settings. Combining quantitative and qualitative methods can lead to a more
comprehensive evaluation and refinement of Al support systems.

In conclusion, while these strategies have advantages and potential challenges, they all
play an important role in ensuring the practical evaluation of clinical Al tools. By proactively
considering these points and addressing potential critiques, we can work towards more robust,
ethical, and effective Al in healthcare.
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