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Artificial Intelligence (AI) algorithms showcase the potential to steer a paradigm shift in clinical 
medicine, especially medical imaging. Concerns associated with model generalizability and biases 
necessitate rigorous external validation of AI algorithms prior to their adoption into clinical 
workflows. To address the barriers associated with patient privacy, intellectual property, and diverse 
model requirements, we introduce ClinValAI, a framework for establishing robust cloud-based 
infrastructures to clinically validate AI algorithms in medical imaging. By featuring dedicated 
workflows for data ingestion, algorithm scoring, and output processing, we propose an easily 
customizable method to assess AI models and investigate biases. Our novel orchestration mechanism 
facilitates utilizing the complete potential of the cloud computing environment. ClinValAI’s input 
auditing and standardization mechanisms ensure that inputs consistent with model prerequisites are 
provided to the algorithm for a streamlined validation. The scoring workflow comprises multiple 
steps to facilitate consistent inferencing and systematic troubleshooting. The output processing 
workflow helps identify and analyze samples with missing results and aggregates final outputs for 
downstream analysis. We demonstrate the usability of our work by evaluating a state-of-the-art breast 
cancer risk prediction algorithm on a large and diverse dataset of 2D screening mammograms. We 
perform comprehensive statistical analysis to study model calibration and evaluate performance on 
important factors, including breast density, age, and race, to identify latent biases. ClinValAI 
provides a holistic framework to validate medical imaging models and has the potential to advance 
the development of generalizable AI models in clinical medicine and promote health equity. 
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1.  Introduction 

Artificial Intelligence (AI) algorithms have demonstrated encouraging results in the field of 
biomedical signal1,2 and image3–11 processing, electronic health record (EHR) analysis12, and 
clinical text processing13 to provide improved diagnostic outcomes, early intervention strategies, 
and well-tailored patient-specific management options. The performance of AI algorithms has been 
on par with radiologists14 and even better in a few scenarios15.  

However, deep learning models are susceptible to generalizability challenges16. Diagnostic AI 
models have demonstrated deteriorated performance during independent evaluation on datasets 
reflecting real-world healthcare settings, especially for specific subpopulations17. The adoption of 
such algorithms can have critical implications for patients’ safety. Thus, large-scale independent 
external validation of AI models is imperative before adopting them into clinical workflows.  

Nevertheless, there are several barriers to robust evaluation. Since AI vendors are protective of 
their intellectual property, they may be unwilling to provide their algorithms to health institutions 
for validation, especially prior to their purchase. Per HIPAA guidelines, medical centers cannot 
share patient data with commercial organizations without their consent since it contains protected 
health information. Moreover, different AI algorithms have varying storage and computing 
requirements. Planning and budgeting for resources to cater to such varying needs can cause 
substantial financial and cognitive burdens on health systems evaluating multiple AI tools on-
premises for clinical adoption. Outsourcing clinical validation work to third-party services can be 
costly and involve legal and operational complications while sharing access to clinical data.  

To address the limited technical guidance on developing methods that can aid in monitoring the 
performance of AI in clinical medicine18, we propose ClinValAI – an open-source cloud-agnostic 
unified framework for establishing robust infrastructures to validate AI algorithms. We customize 
its functionalities for the clinical validation of AI models for medical imaging applications. Our 
work aims to enable medical institutions to rigorously evaluate models prior to their integration into 
clinical workflows. By leveraging our framework, healthcare institutions can screen data from large 
populations to accurately assess model generalizability and investigate latent biases.  

To demonstrate the capabilities of our framework, we used our ClinValAI-based cloud 
infrastructure to perform large-scale clinical validation of Mirai19, a state-of-the-art open-source 
mammography-based AI algorithm for breast cancer risk prediction. We comprehensively evaluate 
its generalizability on a large and diverse dataset of 26,449 2D screening mammography exams 
from 14,291 patients, demonstrating the reliability of our work in monitoring AI models and 
assessing algorithmic bias in healthcare settings. Our framework has the potential to improve a 
clinical institution’s AI model selection process to enhance patient care for their target population. 

2.  Methods 

The clinical validation of AI algorithms can be performed via on-premises as well as cloud-based 
infrastructures. While medical institutions traditionally trust on-premises setups with their patient 
data, challenges, including upfront resource investments, scalability issues, and maintenance 
overhead, can obstruct validation efforts. In contrast, the configurability of cloud-based storage and 
computational environments, their cost-effective setup and maintenance, built-in network security 
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and information recovery services, and rapid acquisition render cloud infrastructures an appealing 
choice for deploying and rigorously validating AI models on large datasets. ClinValAI can be 
leveraged to establish innovative, effective, and secure cloud-based validation infrastructures. 
Figure 1 details our conceptual framework for externally validating AI models in clinical medicine. 

Fig. 1.  Conceptual overview of the ClinValAI framework. 

2.1.  Preserving Patient Data Privacy 

Patient privacy and information security concerns constrain biomedical data sharing and stymie AI 
algorithm development and validation efforts20. ClinValAI leverages the “Model to Data” (MTD) 
paradigm21,22 to validate AI models on private biomedical data. Cloud infrastructure and 
containerization techniques form the foundation of the MTD framework. Rather than providing 
direct data access to the vendors, the Dockerized models are uploaded to the cloud host as containers 
encapsulating the AI algorithms, their dependencies, and other configuration settings required for 
successfully testing the models on the data stored in the cloud. To address intellectual property 
concerns, ClinValAI supports license files for Docker images, allowing AI vendors to control access 
to their AI models. Thus, ClinValAI enables health institutions to preserve patient data within a 
firewall and run models on medical imaging exams without providing vendors direct data access.  

2.2.  Data Pipeline Infrastructure 

ClinValAI features multiple computational pipelines for biomedical data processing and clinical 
validation of AI algorithms through a combination of series and parallel jobs.   

2.2.1.  Workflow Representation 

To comprehensively express the workflow design, we leverage the Workflow Description Language 
(WDL)23 due to its comprehensibility and cross-platform interoperability. WDL enables defining 
pipelines to process and analyze data. WDL necessitates an engine to execute its functionalities. Our 
proposed framework utilizes miniWDL24, a WDL execution engine for biomedical applications that 
functions as a job orchestrator for executing multiple data processing workflows in a parallel 
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fashion, depending on the available memory and computing resources. The customizability of 
ClinValAI’s workflow representation method bolsters its utilization for the clinical validation of AI. 

2.2.2.  Job Scheduling and Batch Processing Orchestration Mechanism 

Our framework is equipped with tools that provision compute instances and communicate with the 
miniWDL engine and a container job scheduling mechanism to automate infrastructure deployment 
(Figure 2). It can be further modified for more granular control over those pipelines. After the 
workflow submission, the WDL script is uploaded to cloud storage, and the job scheduling 
mechanism is invoked to run a miniWDL container, known as the “head” job container. ClinValAI 
implements data processing pipelines through the miniWDL engine operating on this container. The 
head job pulls the WDL script from the cloud storage and, per its instructions, directs the scheduling 
mechanism to spin up “task” job Docker containers that execute individual components of the 
workflow. ClinValAI enables the head job containers to spin up multiple sets of task job containers 
to achieve the parallel execution of computational steps. 

Fig. 2:  ClinValAI’s job scheduling and batch processing orchestration mechanism. 

For our case study on clinical validation of the Mirai algorithm for breast cancer risk prediction 
on screening mammograms, our ClinValAI-based cloud infrastructure ingests a set of compressed 
files, each representing a batch comprising multiple sub-folders corresponding to patients’ 
mammography exams. ClinValAI creates multiple execution streams for each set; all exams in one 
batch are processed serially by leveraging numerous task containers running sequentially. Exams in 
one batch are scored independently of other batches in a parallel fashion. Thus, ClinValAI’s data 
pipeline enables leveraging the full potential of the cloud computing environment. 

In addition to validating AI models using their Docker images, our framework supports 
customizing Linux Docker images to establish optimized workflows. Rather than dynamically 
pulling scripts from cloud storage at run-time, ClinValAI facilitates configuring the Docker images 
at build time. This approach avoids inadvertent version updates in the sequence of instructions 
during run-time, which could produce inconsistent results. While fetching scripts from cloud storage 
during run-time is more convenient, baking them into the Docker image enhances reliability. 

2.3.  Data Ingestion Workflow 

ClinValAI’s data ingestion workflow (Figure 3) is the first of the three stages in the framework. It 
comprises an input auditing and a data standardization mechanism.   
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Fig. 3.  ClinValAI’s data ingestion workflow ensures that inputs are consistent with model prerequisites. 

2.3.1.  Input Auditing Mechanism  

ClinValAI’s input auditing mechanism performs the vital task of verifying if the data can be 
processed and are aligned with the model’s prerequisites before initiating the scoring process. This 
can help ensure a sample size that preserves statistical power for meaningful analysis. Through a 
configured Docker image, it compares the uploaded data with a manifest file and algorithm-specific 
requirements to verify that the dataset is complete with all the required information. 

To validate Mirai, a manifest file comprising the accession numbers, data modality, the 
corresponding number of images in each exam, image laterality and projection, file sizes, etc., is 
created. The auditing logic checks for corrupted files, DICOMs with missing pixel array data, and 
unsupported manufacturing devices and monitors if the image metadata contains all the information 
required by the algorithm. For example, AI models for mammography interpretation may not be 
able to process images if view/projection (Cranio-Caudal (CC) or Medio-Lateral Oblique (MLO)) 
or laterality (left or right breast) information is missing from DICOMs. ClinValAI thoroughly 
analyzes the data to identify such inconsistencies and features a comprehensive input auditing 
mechanism to ensure a seamless external validation study. 

2.3.2.  Data Standardization 

Standardizing inputs before initiating AI inferencing is necessary if there is variation from multiple  
data sources or if a data source requires enrichment before algorithmic processing can take place. 
ClinValAI’s data standardization mechanism analyzes the findings of the input auditing logic and 
provides the feature of customizing the associated Linux Docker image to achieve data 
standardization and ensure the quality of the study data. 

For our validation study of Mirai’s performance, if a set of DICOMs is corrupted or missing 
pixel array information, the standardization mechanism does not pass them through the scoring 
workflow. Similarly, it removes images that do not match the study criteria – for example, deleting 
all the non-mammography images to ensure that only the acceptable modalities are included.  

One of the important aspects of ClinValAI’s data standardization mechanism is its ability to 
impute missing information. For example, if an image does not have laterality or projection 
information in the DICOM headers, the framework populates the DICOM metadata using the details 
from the manifest files. Moreover, if the required data is not available in the manifest file, it parses 
other descriptive DICOM headers to look for specific information for imputation. For example, AI 
algorithms for mammography interpretation expect laterality information in one of the 
ImageLaterality, Laterality, or FrameLaterality headers and projection information in the 
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ViewPosition header. If these tags are missing, ClinValAI’s data standardization mechanism 
analyzes other subjective headers like SeriesDescription to systematically impute laterality and 
projection information into their respective tags. Thus, ClinValAI can be customized to facilitate 
effective data cleaning and preprocessing, information imputation, and data standardization. 

2.4.  Scoring Workflow 

ClinValAI’s scoring workflow (Figure 4) is the second stage in the framework. It comprises a data 
restructuring, an algorithm inferencing, and a score extraction mechanism. 

 
Fig. 4.  ClinValAI’s scoring workflow ensures consistent inferencing and systematic troubleshooting. 

2.4.1.  Data Restructuring 

Various health institutions can organize patient data and medical images in different formats, 
requiring datasets to be systematized by patient ID, accession numbers, or date of collection. 
Different AI models can have their specific input structuring requirements. For example, a model 
may require all images from a patient to be in a single folder, while another may need additional 
sub-folders based on exam ID or modality. Different models may need varying numbers of images 
per exam – for instance, Mirai needs four standard 2D mammograms (CC and MLO views of the 
left and right breast), whereas some models can function even with unilateral exams. Some models 
can raise errors if inputs contain multiple images of the same view and laterality combination, while 
others can successfully score them. Moreover, some models can process 2D and 3D images 
simultaneously, while others can leverage separate Docker images depending on shape and 
modality. ClinValAI supports extensive data restructuring by enabling the customization of Docker 
images to account for model-specific variations by holistically analyzing the DICOM metadata and 
pixel array information, thereby establishing consistency between input and model criteria. 

2.4.2.  AI Algorithm Inferencing 

ClinValAI enables effective customization of AI algorithms’ Docker images to facilitate accurate 
scoring of exams. The Docker file is specified with the required environment variables and 
necessary scoring scripts, and the updated Docker image is used to spin up the AI model’s Docker 
container to execute algorithmic processing. Information about the computational requirements of 
the AI algorithms can be utilized to identify the appropriate compute instances to be specified in our 
framework. To work with asynchronous inferencing workflows, our framework also features a 
polling mechanism depending on the inference time of each algorithm to ensure that the compute 
instances are not stalled due to inconsistent data, node failures, or other issues. Furthermore, our 
framework provides the flexibility of incorporating additional steps, such as drafting a list of input 
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studies to be processed or creating corresponding output folders for storing final results, depending 
on the models’ prerequisites. Similarly, using our framework, we reconfigure Mirai’s open-source 
Docker image via programmatic steps to streamline its inferencing workflow. Thus, by facilitating 
multiple customization features, ClinValAI enables robust validation of AI algorithms. 

2.4.3.  Score Extraction 

After the completion of the scoring process, the model’s generated files need to be processed to 
retrieve specific outputs of interest, such as image-, exam-, or patient-level scores. Different AI 
algorithms have different ways of representing outputs. ClinValAI enables customizing the Linux 
Docker image to follow the modes and steps to extract scores from diverse formats – from flat files 
like comma-separated values (CSV) documents to highly nested DICOM Structured Reports (SRs) 
and JavaScript Object Notation (JSON) objects. Similarly, ClinValAI also facilitates the storage of 
supplementary files, such as annotations in processed images or heat maps, and associated model 
explanations, if available, to facilitate improved interpretation for radiologists. Moreover, this step 
also records and organizes logs specific to the algorithm and workflow. Thus, ClinValAI facilitates 
systematic troubleshooting, effective scoring, and rigorous clinical validation of AI algorithms.  

2.5.  Output Processing Workflow  

ClinValAI’s output processing workflow (Figure 5) is the third and final stage in the framework. It 
comprises an output auditing and an output aggregation mechanism.  

 
Fig. 5.  ClinValAI’s output processing workflow helps identify and analyze samples with missing results and 

aggregates final outputs for downstream analysis. 

2.5.1.  Output Auditing Mechanism 

Once the scoring workflow has been executed, ClinValAI performs the essential task of verifying 
if results have been produced for all the inputs and if the generated files comply with the algorithm’s 
expected outputs. Moreover, the framework facilitates examining if the required numeric values of 
interest, inference reports, and supplementary files can be extracted from the resulting outputs. 
ClinValAI identifies samples with missing output data, irretrievable scores, and corrupted output 
files to enable analysis of samples to be re-scored. If no outputs are generated for a patient’s exam, 
infrastructure-specific logs can be inspected to check for issues related to compute instances or 
customization of the Docker images. If scores cannot be extracted from the model’s output for an 
exam, algorithm-specific logs can be analyzed to check for inconsistencies and errors. Overall, 
ClinValAI facilitates a holistic output auditing mechanism for the streamlined validation of models.  
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2.5.2.  Output Aggregation Mechanism 

Outputs from individual workflows are hierarchically stored based on set number, batch number, 
and exam ID. Analyzing the complete dataset in the distributed format of cloud storage can be 
cumbersome. Before statistical analysis can be performed, ClinValAI systematically aggregates 
relevant details by appending all results to a relational database. After the completion of scoring 
workflows for all standardized batches of exams, the pipeline connects to the database and 
hierarchically uploads data from the audited results, supplementary files, and logs by inserting rows 
for every set, batch, and exam as demonstrated by the entity relationship diagram (Figure 6). During 
statistical analysis, this database is pulled to analyze findings. ExamIDs and Study UIDs (Unique 
Identifiers) are used to cross-reference the AI algorithm’s results and the attributes of interest. 

  
Fig. 6.  Entity Relationship Diagram for the aggregated output data. Abbreviations: URI=Uniform Resource Identifier; 

PK=Primary Key; FK=Foreign Key 
 
Thus, ClinValAI features multiple customizable workflows to establish optimized infrastructures 
for robust clinical validation of AI algorithms for medical imaging applications. 

3.  Evaluation and Results 

To evaluate the utility of our framework, we used our ClinValAI-based cloud infrastructure to 
perform a rigorous external validation of Mirai, a state-of-the-art deep learning algorithm that 
predicts future breast cancer risk across five years by processing the four standard views of a 2D 
digital mammogram – Cranio-Caudal and Medio-Lateral Oblique views of the left and right breast.  

3.1.  Patient Cohort 

All mammography screening exams from 2010-2014 performed across four imaging facilities in the 
University of Washington (UW) Medicine health system were reviewed for eligibility. Exams of 
women with age < 40 or ≥ 80 years, a personal history of breast cancer, or the presence of breast 
implants were excluded. Cancer outcomes at year 5 after every exam were collected via linkage to 
the Washington State cancer registry, which captures all breast cancers diagnosed within the state 
of Washington through December 31st, 2020, allowing for robust ground truth for all screening 
exams. Information on breast density and patient demographics, including age at the time of imaging 
and race, were obtained from the University of Washington Medicine electronic medical records. 
ClinValAI excluded exams with insufficient 2D screening images and processed 26,449 exams from 
14,291 patients to generate Mirai scores. A total of 543 exams (2.1%) were followed by a breast 
cancer diagnosis within five years (88 in year 1, 92 in year 2, 112 in year 3, 119 in year 4, and 132 
in year 5). Table 1 shows the patient characteristics. BI-RADS25 categories ‘heterogeneously dense’ 
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and ‘extremely dense’ correspond to dense breasts, and ‘almost entirely fatty’ and ‘scattered 
fibroglandular’ correspond to non-dense breasts. 

Table 1. Patient characteristics at each exam. 
   Breast Cancer within 5 years 
 All  Yes No 

Variable (n = 26,449)  (n = 543) (n = 25,906) 
Age     
    40-49 7,014 (26.5%)  114 (21.0%) 6,900 (26.6%) 
    50-59 9,431 (35.7%)  151 (27.8%) 9,280 (35.8%) 
    60-69 7,082 (26.8%)  171 (31.5%) 6,911 (26.7%) 
    70-79 2,922 (11.0%)  107 (19.7%) 2,815 (10.9%) 
Race     
    White 20,365 (82.6%)  460 (87.1%) 19,905 (82.5%) 
    Black 1,649 (6.7%)  31 (5.9%) 1,618 (6.7%) 
    Asian 2,394 (9.7%)  33 (6.2%) 2,361 (9.8%) 
    Other 241 (1.0%)  4 (0.8%) 237 (1.0%) 
    Unknown 1,800  15 1,785 
Breast density     
    Not dense 11,659 (44.1%)  216 (39.8%) 11,443 (44.2%) 
    Dense 14,786 (55.9%)  327 (60.2%) 14,459 (55.8%) 
    Unknown 4  0 4 

Values are number (%). 

3.2.  Statistical Analysis 

A mammography exam was used as the unit of analysis. Nonindependence of multiple exams from 
the same women was accounted for in calculations of 95% confidence intervals (CIs) and p-values 
by using generalized estimating equations (GEE) or the nonparametric bootstrap, clustered by 
woman26. The Mirai algorithm provides cumulative risk predictions for years 1-5 following the 
index examination. The outcome used for evaluating the performance of Mirai was the 
presence/absence of a cancer diagnosis at each timeframe. The discrimination performance of Mirai 
was evaluated using receiver operating characteristic (ROC) curves, the area under the ROC curve 
(AUC), and Uno’s concordance index (c-index) as an overall summary over the 5-year timeframe27. 
The calibration of Mirai was evaluated using calibration plots and corresponding summaries of 
overall calibration (calibration-in-the-large) and the calibration slope28. To help distinguish between 
breast cancer detection vs. risk prediction performance, we performed the analyses using all 
available exams and then repeated the analyses after excluding exams that had a breast cancer 
diagnosis within six months. All statistical analyses were conducted using R (version 4.3, R 
Foundation for Statistical Computing, Vienna, Austria). All hypothesis tests were two-sided, with 
statistical significance defined as p < 0.05. 

3.3.  Discrimination Performance 

AUCs ranged from 0.81 (95% CI: 0.75-0.86) for 1-year cancer outcomes with the 1-year Mirai 
scores to 0.70 (95% CI: 0.0.67-0.72) for 5-year cancer outcomes with the 5-year Mirai scores when 
including all examinations (Figure 7, Table 2). The c-index was 0.70 (95% CI: 0.67-0.72). After 
excluding 70 exams with a cancer diagnosis within six months, the AUC was 0.72 (95% CI: 0.56-
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0.84) at 1 year and 0.68 (95% CI: 0.65-71) at 5 years, while the c-index was 0.68 (95% CI: 0.65-
0.70). These values were more similar to previously reported results in other cohorts19,29 after 
applying the same type of exclusion (Table 2)29, though they were still on the lower end of the range.  

 
Fig. 7. Discrimination performance of Mirai. Panel A: ROCAUC values over time and the overall c-index. The orange 
values are based on all exams, and the blue values are after excluding cancers within six months. Error bars represent 

95% CIs. Panel B: ROC curves at different time points based on all exams. Panel C: ROC curves at different time 
points after excluding cancers within six months. 

 
Table 2. Discrimination performance of Mirai in the University of Washington and 7 previously reported cohorts. 

 1-Year AUC 
(95% CI) 

5-Year AUC 
(95% CI) 

C-index 
(95% CI) 

All Exams    
    University of Washington, USA 0.81 (0.75-0.86) 0.70 (0.67-0.72) 0.70 (0.67-0.72) 
    MGH, USA19 0.84 (0.80-0.87) 0.76 (0.73-0.79) 0.75 (0.72-0.78) 
    Novant, USA29 0.78 (0.73-0.84) 0.75 (0.70-0.80) 0.75 (0.70-0.80) 
    Emory, USA29 0.83 (0.81-0.86) 0.76 (0.74-0.79) 0.77 (0.75-0.79) 
    Maccabi-Assuta, Israel29 0.86 (0.81-0.91) 0.75 (0.71-0.79) 0.77 (0.73-0.81) 
    Karolinska, Sweden19 0.90 (0.89-0.92) 0.78 (0.76-0.80) 0.81 (0.79-0.82) 
    CGMH, Taiwan19 0.90 (0.87-0.93) 0.79 (0.75-0.82) 0.79 (0.76-0.83) 
    Barretos, Brazil29 0.89 (0.86-0.93) 0.82 (0.78-0.86) 0.84 (0.81-0.88) 
Excluding Cancers within 6 Months    
    University of Washington, USA 0.72 (0.56-0.84) 0.68 (0.65-0.71) 0.68 (0.65-0.70) 
    MGH, USA19 0.71 (0.60-0.84) 0.71 (0.68-0.75) 0.69 (0.66-0.73) 
    Novant, USA29 N/A 0.72 (0.66-0.79) 0.72 (0.66-0.79) 
    Emory, USA29 0.74 (0.66-0.84) 0.71 (0.68-0.74) 0.69 (0.66-0.72) 
    Maccabi-Assuta, Israel29 N/A 0.68 (0.62-0.74) 0.70 (0.64-0.76) 
    Karolinska, Sweden19 N/A 0.71 (0.69-0.73) 0.71 (0.69-0.74) 
    CGMH, Taiwan19 0.84 (0.72-0.99) 0.70 (0.66-0.75) 0.70 (0.66-0.75) 
    Barretos, Brazil29 0.87 (0.80-0.94) 0.75 (0.70-0.80) 0.78 (0.74-0.83) 

MGH = Massachusetts General Hospital; CGMH = Chang Gung Memorial Hospital. 
 

 
Fig. 8. Discrimination performance of Mirai within subgroups. Error bars: 95% CIs. Dashed line: AUC = 0.50. 
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Discrimination, as measured by the overall c-index, was also examined within subgroups 
defined by age, race, and breast density, as shown in Figure 8. There were no statistically significant 
differences in the c-index between subgroups (unadjusted p > 0.094 for each comparison). 

3.4.  Calibration Performance 

Calibration plots for Mirai risk predictions versus observed at different timeframes are shown in 
Figure 9. The corresponding metrics of overall calibration (observed risk minus mean predicted risk) 
and the calibration slope are shown in Table 3. When all exams are included, the metrics indicated 
significantly overestimated risk in years 1-2 (overall calibration: -0.15% to -0.10%, p < 0.014 for 
both), but that Mirai was overall reasonably well calibrated for the later years, where the 95% CIs 
for overall calibration included zero (no difference between observed and predicted risk on average) 
and the 95% CIs for the calibration slope included 1 (predictions were not more or less extreme 
[farther from the mean] than observed on average).  

 
Fig. 9. Calibration plots of Mirai with all exams included, with predicted risks grouped into deciles of approximately 
equal size. Error bars represent 95% CIs. The dashed line corresponds to perfect calibration (intercept = 0, slope = 1). 
 

Table 3. Calibration statistics for Mirai. 
 All Exams  After Excluding Cancers within 6 Months 
 Overall Calibration*  Calibration Slope†  Overall Calibration*  Calibration Slope† 
Timeframe Estimate (%) (95% CI)  Estimate (95% CI)  Estimate (%) (95% CI)  Estimate (95% CI) 
1-year risk -0.10 (-0.17, -0.03)  0.83 (0.52, 1.22)  -0.36 (-0.39, -0.32)  0.05 (0.00, 0.12) 
2-year risk -0.15 (-0.25, -0.04)  0.76 (0.51, 1.06)  -0.40 (-0.48, -0.32)  0.21 (0.08, 0.36) 
3-year risk -0.13 (-0.29, 0.03)  0.89 (0.60, 1.20)  -0.38 (-0.53, -0.26)  0.40 (0.20, 0.63) 
4-year risk -0.05 (-0.25, 0.14)  0.90 (0.63, 1.20)  -0.31 (-0.49, -0.12)  0.50 (0.27, 0.76) 
5-year risk 0.09 (-0.15, 0.33)  1.03 (0.75, 1.32)  -0.16 (-0.38, 0.07)  0.66 (0.44, 0.91) 

*Observed risk minus mean predicted risk; a value > 0 indicates the prediction under-estimated risk on average, and a 
value < 0 indicates the prediction over-estimated risk. 
†A well-calibrated model has a calibration slope of 1; slope > 1 indicates that high predictions tended to underestimate 
risk (not high enough) and low predictions tended to overestimate risk (not low enough); slope < 1 indicates predictions 
tended to be more extreme than observed (high values too high and low values too low). 

 
When exams with cancer diagnoses within six months were excluded, the calibration metrics 

substantially worsened (Table 3). Overall, Mirai significantly overestimated risk, more so at earlier 
timeframes (overall calibration: -0.40% to -0.36% in years 1-2 and -0.31% to -0.16% in years 4-5), 
and the calibration slopes were significantly less than 1 at all timeframes (calibration slopes: 0.05 
to 0.66, p < 0.012 across years). 

Thus, ClinValAI enabled the establishment of an effective cloud infrastructure to successfully 
perform the clinical validation of Mirai on a large and diverse dataset to study its generalizability.  
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4.  Discussion 

We introduce ClinValAI to promote the external clinical validation of AI algorithms on medical 
imaging exams, thereby providing the opportunity to reliably understand their real-world 
performance in healthcare settings and their impact on patient care, health, and safety. Our 
framework can be leveraged to evaluate the generalizability of deep learning models on healthcare 
data from diverse demographics to analyze the differences in performance across various sub-
populations and identify biases. ClinValAI can facilitate the detection of models’ failure modes and 
enable an understanding of AI’s potential to function as a standalone tool for diagnostic applications.  

An important consideration while using our work is the requirement to specify necessary 
programmatic steps while configuring Docker images to execute individual mechanisms. However, 
ClinValAI’s multiple customizable features enhance its usability for validating AI models.  

Our presented analysis is limited to just one deep learning algorithm. As a next step, we plan to 
leverage ClinValAI to perform a rigorous external validation study of Mirai and three commercial 
AI algorithms for breast cancer risk prediction on a large and diverse dataset of ≥ 40,000 
mammograms from seven registries affiliated with the Breast Cancer Surveillance Consortium 
(BCSC). Utilizing our framework for this study will enable the evaluation of model performance at 
the woman, exam, and tumor levels, facilitating a comprehensive assessment of the generalizability 
of AI models. While we showcase ClinValAI’s usability for medical imaging models, our work can 
be extended to validate AI models for various biomedical data modalities.   

Finally, ClinValAI is equipped to provide opportunities to periodically retest performance. 
Vendors can analyze performance based on detailed findings from the results communicated by our 
framework. This encourages the development of explainable models to better reason performance, 
thereby enhancing the potential of receiving clinicians’ trust. The streamlined feedback mechanism 
can support targeted algorithm fine-tuning efforts. This can foster enhanced academic-industry 
partnerships. The continuous monitoring feature enables analyzing variations in model performance 
vis-à-vis data drift and model drift. Overall, ClinValAI can pave the way for studying the capabilities 
of AI algorithms in optimizing clinical workflows and reducing the burden on the medical fraternity. 
ClinValAI’s codebase and scripts for statistical analysis can be accessed here: 
https://github.com/OjasRamwala/ClinValAI. 

5.  Conclusion 

The rise in commercial AI algorithms in clinical medicine and the associated generalizability 
concerns make rigorous validation indispensable to the clinical translation of AI tools. ClinValAI 
addresses critical challenges associated with external validation efforts and provides an easily 
customizable and cloud-agnostic framework to build scalable infrastructures to audit and monitor 
AI algorithms. By enabling large-scale external validation efforts on data from diverse cohorts, our 
work has the potential to foster health equity and overcome health disparities by promoting the 
development of robust, interpretable, and generalizable AI algorithms for healthcare applications. 
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