
ReXErr: Synthesizing Clinically Meaningful Errors in
Diagnostic Radiology Reports

Vishwanatha M. Rao†1, Serena Zhang†1, Julian N. Acosta1, Subathra Adithan2, Pranav Rajpurkar1

1Department of Biomedical Informatics, Harvard Medical School Boston, MA 02115, USA
2Department of Radiodiagnosis, Jawaharlal Institute of Postgraduate Medical Education and

Research, India
E-mail: : vishwanatha.rao@pennmedicine.upenn.edu, serena2z@stanford.edu,

julian acosta@hms.harvard.edu, subathra.a@jipmer.edu.in

Accurately interpreting medical images and writing radiology reports is a critical but chal-
lenging task in healthcare. Both human-written and AI-generated reports can contain errors,
ranging from clinical inaccuracies to linguistic mistakes. To address this, we introduce ReX-
Err, a methodology that leverages Large Language Models to generate representative errors
within chest X-ray reports. Working with board-certified radiologists, we developed error
categories that capture common mistakes in both human and AI-generated reports. Our
approach uses a novel sampling scheme to inject diverse errors while maintaining clinical
plausibility. ReXErr demonstrates consistency across error categories and produces errors
that closely mimic those found in real-world scenarios. This method has the potential to aid
in the development and evaluation of report correction algorithms, potentially enhancing
the quality and reliability of radiology reporting.

Keywords: Radiology Report Generation; Chest X-Rays; LLMs; Chat-GPT; Error Injection;
Synthetic Data.

1. Introduction

Radiology reports provide crucial information for clinical decision-making and patient out-
comes.1 However, creating radiology reports is an intensive process, and requires a trained
specialist to analyze medical images and write in-depth medical reports.2,3 In human-written
reports, errors can arise due to various factors such as fatigue, high case volumes or complexity.
These errors may include misinterpretation of imaging findings, incomplete documentation of
relevant clinical information, and inconsistencies in terminology and language usage. In addi-
tion to such inaccuracies, the subjective nature of radiological interpretation leaves room for
errors, which may go unnoticed until they impact patient care.4,5

Recently, there has been a significant push towards automating the creation of these reports
using deep learning. While current approaches to generating radiology reports have, in some
cases, succeeded in creating complete and clinically relevant reports,6–9 automated report
generation presents its own set of challenges stemming from inherent biases within algorithms,
model constraints, and limitations in the data used. Errors can range from references to non-
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Fig. 1. Summary of ReXErr error generation pipeline. The bottom panel provides an example of
applying ReXErr to a sample radiology report.

existing priors, which are easier to detect, to false predictions or omissions, which are much
more problematic clinically and often go unnoticed.10,11 The prevalence of errors, both in
radiologist-written as well as AI-based reports, leaves a great need for more comprehensive
tools that can screen for and correct them. Throughout this paper, we present the Chest
X-Ray Report Error (ReXErr) method that can generate errors at a report and sentence
level. ReXErr offers a novel pipeline to synthesize plausible errors that capture the breadth
and diversity of errors made by humans and models and can thus be used to generate data
to train and adapt error correction algorithms. Figure 1 outlines an overview of the error
generation process.

2. Related Work

2.1. Error Classification in Radiology Reports

The 12-category framework developed by Kim and Mansfield, based on an evaluation of 1,269
errors, offers a foundation for understanding and classifying errors in human-generated reports
and is the most frequently used for human-error analysis.4,12 Most of the errors in this clas-
sification system fall under two types: missed findings (under-reading, satisfaction of search,
etc.) and interpretation errors (finding attributed to wrong cause/clinical entity due to faulty
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Table 1. Summary of the errors incorporated within the ReXErr pipeline.

Error Type Error Category Specific Errors

AI Generated Report Errors

Content Addition

Add Medical Device

False Prediction

False Negation

Linguistic Quality
Add Repetitions

Add Contradictions

Context-Dependent

Change Name of Device
Change Position of Device

Change Severity

Change Location
Change Measurement

Human Errors

Content Addition and

Context-Dependent

Human error - similar to above

Linguistic Quality
Change to Homophone
Add Typo

reasoning, lack of knowledge, etc.), with each of the 12 classifications focusing on the cause
for such an error to occur..5

Errors from report generation models differ, with more specific issues including halluci-
nated references to prior studies, and have their own categorization framework. One example is
the framework developed by Yu et al. to analyze common errors in model-generated radiology
reports, aiming to create metrics that account for these errors and improve alignment with
clinician feedback.13 Their framework includes six categories: “False prediction of finding”,
“Omission of finding”, “Incorrect location/position of finding”, “Incorrect severity of find-
ing”, “Mention of comparison that is not present in the reference impression”, and “Omission
of comparison describing a change from a previous study.” They develop a dataset, ReXVal,
which contains annotations on clinically significant and insignificant errors under their six
category framework for AI generated radiology reports with respect to ground-truth reports.
Another dataset, Refisco, was created to categorize the errors commonly made in retrieval-
based report generation models by their severity level and then correct each error using either
deletion, substitution, or insertion of a line.14 Both datasets provide different error catego-
rization frameworks specific for AI-generated reports, offering error-report ground truth pairs
with clinician annotations. However, their limited size (200 and 60 reports, respectively) un-
derscores the need for more extensive datasets that contain error reports and ground truth
pairs.

2.2. Synthetic Data Generation for Radiology Reports

Synthetic data generation is emerging as a valuable tool in radiology reporting research, ad-
dressing challenges of data scarcity. Recent studies have demonstrated its potential in various
applications. Zhao et al.15 generated modified reports with revision instructions, aiding in
the training of instruction-based report revision systems. Hyland et al.16 used GPT to para-
phrase MIMIC dataset reports, expanding their training set for report generation models.
Others have leveraged large language models to selectively modify radiology reports, address-
ing various clinical and research needs such as removing prior medical history references and
standardizing report structures.17,18 Most similarly, Asiimwe et al.19 created a synthetic error
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report set for developing an error detection and correction model. They intentionally intro-
duced errors into radiology reports, focusing on four out of the six error categories defined by
Yu et al.’s framework. This process resulted in the creation of 120,000 pairs of error-containing
and error-free reports, which serve as training data for their model. These advancements high-
light the growing importance of synthetic data in improving radiology reporting systems by
enabling large-scale, precise data generation. However, it also reveals the need for a more
comprehensive dataset that captures a wider range of diverse and complex errors.

Building upon these advancements, our study utilizes synthetic data generation to create
a large-scale dataset that incorporates a broader range of errors. We expand on the framework
established by Yu et al., addressing all six major categories of AI-generated errors, while also
introducing additional subtypes such as device-related errors. Furthermore, our dataset ad-
dresses linguistic quality issues in both human- and AI-generated reports. This comprehensive
approach allows us to create a more diverse and robust error dataset, providing a valuable
resource for developing and evaluating advanced radiology reporting systems.

2.3. Applications in Error Detection and Report Correction

Our comprehensive error dataset has significant potential applications in advancing both er-
ror detection and report correction in radiology. In error detection, research has progressed
from simple matching techniques for specific issues like laterality errors to more sophisticated
methods using LSTM and BERT-based models.20–22 Recent studies have even shown GPT-4’s
capability to identify common error categories (omission, insertion, spelling, and side confu-
sion).23 Our dataset, encompassing a wider range of error types, could further enhance these
detection models.

In report correction, efforts have focused on addressing specific types of hallucinations in
AI-generated reports, such as false references to non-existent prior scans.24,25 The emerging
task of report revision aims to refine existing reports through instruction prompts, as demon-
strated in recent multi-functional foundation models.6,15 Such an error-rich dataset could serve
as a valuable resource for training and evaluating these correction and revision systems, po-
tentially improving their ability to handle a diverse array of error types.

Furthermore, our dataset could be utilized as negative examples in reinforcement learning
algorithms to enhance AI model performance, or to validate automatic evaluation metrics like
RadCliQ and FineRadScore.26 This broad applicability underscores the potential impact of
our error injection method and resulting dataset in advancing the accuracy and reliability of
radiological reporting systems.

3. Methods

We created a streamlined pipeline to inject errors into radiology reports, which can be used
downstream to generate large datasets and train models for the identification and revision of
incorrect radiology reports. We demonstrate error generation with the ReXErr pipeline using
reports from the MIMIC-CXR train, dev, and test sets.27 This pipeline supports two main
tasks: report correction and sentence-level entailment. For both tasks, sentences are classified
into three categories: correct (0), error (1), and neutral (2). Neutral sentences reference past
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Table 2. Baseline prompting description for each error category.

Error Baseline Instruction / Description
Add Medical Device Add sentences that could be part of a radiology report regarding the presence of one or

more devices such as these: pacemaker, central venous line, NG tube, ET tube, ICD.

Change Name of Device If there is a medical device present in the report, change the name of the medical

instrument to a different name that is clinically plausible.

Change Position of Device If there is a medical device location present in the report, change the position of the
medical instrument to a different position that is clinically plausible.

Change Severity Change the severity of a finding in the report in a manner that makes clinical sense (e.g.,
change ‘mild’ to ‘moderate’).

Change Location Change the location or anatomy of a finding in the report in a manner that is still

clinically accurate (e.g., change ‘right’ to ‘left’ or ‘lateral’ to ‘medial’; always modifying a

sentence).

False Prediction Add a finding that is not present in the report (either adding a sentence or modifying a
sentence to insert).

False Negation Change a particular finding from the report from present to absent by changing a

sentence to indicate absence of the positive finding.

Change Measurement If there is a measurement for a device/finding present, change the units of measurement

(e.g., change ‘cm’ to ‘mm’) or change the value of the measurement to a different but still

reasonable value (e.g. change ‘4.9 cm’ to ‘5.8 cm’).

Add Opposite Sentence Add/alter a statement that is the opposite of another statement earlier in the same report.

Add Repetitions Add repetitions of sentences present within the report.

Change to Homophone Change a word in the report to a homophone of that word.

Add Typo Add a typographical error in the report.

reports, findings, or scans and are categorized separately, as algorithms would not be able to
determine their accuracy without additional context.

Report correction: Our pipeline generates paired ground truth and error reports, with
each error report containing three errors sampled from 12 possible error categories. Sampling
three errors per report provides a balanced representation of diverse error types while main-
taining a degree of similarity to the original report and has been used prior in the literature.23

We also separately specify the three error categories used in generating each report.
Sentence-level entailment: We provide a separate pipeline to create a sentence-level

error categorization by splicing pairs of sentences from ground truth and error reports. Each
pair includes the original sentence and its error version, their label (see categories below),
type of error injected (error class) and sequence in the original report (index). Maintaining
the sequential detail can help sentence-level entailment models developed upon data generated
through ReXErr use contextual information from previous sentences to identify errors such as
repetitions and contradictions.

3.1. Error Categories

Three board-certified radiologists were consulted in synthesizing the final list of errors included
within this generation protocol. The errors fall under two broad categories: AI generated report
errors and human errors. We further identify three sub-categories of errors: content addition,
context-dependent, and linguistic quality errors. Each of the 12 final error categories fall under
one of these subcategories and one of the two broader categories. The particular errors were
determined in careful collaboration with radiologists; specifically, we used a set of radiologist-
annotated reports generated from a current state of the art model to determine the most
salient automated generation errors, and consulted radiologists directly to gain a sense for
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human errors.6 We incorporate all six major categories of AI-generated errors established by
Yu et al.13 The content addition and context-dependent errors observed in human-generated
reports closely parallel those found in AI-generated reports. Additionally, we introduce a set of
errors that address linguistic quality issues present in both human- and AI-generated reports,
thereby creating a comprehensive error classification system. Table 1 contains a summary of
the errors implemented.

3.2. Data Synthesis

After extensive iteration and feedback from clinical experts, we developed a comprehensive
pipeline for introducing plausible errors into radiology reports using GPT-4o.28 GPT-4o was
chosen given its high performance relative to price. We define “plausible” errors as those that
either a human or an AI model could realistically make. The pipeline employs a sophisticated
sampling strategy to inject errors across all three categories within each report. Context-
dependent errors are only introduced when the associated context is present, as determined
by regex-based labeling that searches for specific keywords in each report. For instance, errors
related to changing the location and type of medical devices are only injected if a device
is mentioned in the report. The regex keywords for each category are constructed through
a combination of clinician input and analysis of radiology report terms used in the dataset.
Our approach balances the need for diverse and plausible errors while maintaining the overall
structure and believability of the reports. The problem formulation for the injection of errors
across all three categories is represented in Equation 1, where EC , EA, and EL represent
context-dependent, content addition, and linguistic quality errors respectively. T refers to the
tags present, where T ∈ {“device”, “measurement”, “location”, “severity”}.

P (Ec, EA, EL | T ) = P (Ec | T )× P (EA)× P (EL) (1)

The probability of selecting both the content addition (EA) and linguistic quality (EL) errors
are shown below in Equation 2. A and L both represent the number of individual errors present
within the content addition and linguistic quality error categories respectively across both the
AI and human groups. In our case, A would be 3 and L would be 4, where L includes the
linguistic quality errors in both the AI and human error categories.

P (EA) =
1

|A|
P (EL) =

1

|L|
(2)

The probability of selecting a context-dependent error given a particular tag is given by
Equation 3 below, where the error for the context-dependent error category is sampled across
the other categories if no relevant context is present. In the case where multiple tags are
provided, the probability of selecting a particular context-dependent error given a tag depends
on the normalized weight assigned to the tag (w′(ti)) as well as the total number of context-
dependent errors associated with each tag (E(t)).

P (Ec | T = ti) =


w′(ti)∑

t∈T
w′(t)×E(t) if T ̸= ∅

1
|A|+|L| if T = ∅

(3)
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Table 3. Examples of ground truth and error report generated through the ReXErr pipeline.

Ground Truth Error Report Errors Injected
Findings: Findings: The patient is status
post median sternotomy and CABG. The heart

size is top normal. The mediastinal and hilar

contours are unremarkable. Bilateral calcified
pleural plaques are seen diffusely which limits

assessment of the underlying pulmonary

parenchyma. No focal consolidation, pleural
effusion or pneumothorax is clearly

demonstrated. There are no acute osseous

abnormalities.

Impression: Bilateral calcified pleural

plaques indicative of prior asbestos exposure.

No definite acute cardiopulmonary abnormality
otherwise noted.

Findings: The patient is status post median
sternotomy and CABG. The heart size is

enlarged. The mediastinal and hilar contours

are unremarkable. Right calcified pleural
plaques are seen diffusely which limits

assessment of the underlying pulmonary

parenchyma. No focal consolidation, pleural
effusion or pneumothorax is clearly

demonstrated. There is a suspected left clavicle

fracture.

Impression: Right calcified pleural plaques

indicative of prior asbestos exposure. There is a

moderate left pleural effusion. No definite acute
cardiopulmonary abnormality otherwise noted.

‘change location’,
‘false prediction’, ‘add

contradiction’

Findings: Single frontal view of the chest
provided. There is no focal consolidation,

effusion, or pneumothorax. The
cardiomediastinal silhouette is normal. Again

seen are multiple clips projecting over the left

breast and remote left-sided rib fractures. No
free air below the right hemidiaphragm is seen.

Impression: No acute intrathoracic process.

Findings: Single frontal view of the chest
provided. There is know focal consolidation,

effusion, or pneumothorax. The
cardiomediastinal silhouette is normal. Again

seen are multiple clips projecting over the left

breast and remote left-sided rib fractures. There
is an ET tube present in the trachea. No free

air below the right hemidiaphragm is seen. No

free air below the right hemidiaphragm is seen.

Impression: No acute intrathoracic process.

‘add repetitions’, ‘add
medical devices’,

‘change to homophone’

Findings: There is mild-to-moderate
cardiomegaly, not significantly changed

compared with prior study. There is no

pneumothorax. A newly placed endotracheal
tube ends 4.3 cm above the carina. An NG

tube is seen ending in the stomach with its tip

and side ports beyond the margin of imaging.

Impression: 1. Severe acute pulmonary
edema. 2. Endotracheal tube ending 4.3 cm

above the carina.

Findings: There is mild-to-moderate
cardiomegaly, not significantly changed

compared with prior study. There is no

pneumothorax. A newly placed endotracheal
tube ends 4.3 mm above the carina. An NG

tube is seen ending in the stomach with its tip

and side ports beyond the margin of imaging.

Impression: 1. No pulmonary edema. 2.

Endotrakheal tube ending 4.3 cm above the

carina.

‘change measurement’,
‘false negation’, ‘add

typo’

The weights assigned to each tag w(ti) was calculated based on the frequency of each tag
present within the reports through the equations shown below. Each weight is equal to the
inverse of the prevalence of its respective tag. The weights are then normalized to w′(t).

w(t) =
1

f(t)
W =

∑
t∈T

w(t) w′(t) =
w(t)

W
(4)

Based on this sampling strategy, GPT-4o was then used to inject the errors. Table 2 summa-
rizes the baseline instructions given for each error type. Appendix A contains the complete
long-form prompt used to prompt GPT, whereas Appendix B contains the particular prompts
for each error category, including the examples for the relevant errors that use them.

3.3. Sentence Level Error Generation Process

Once the error reports were generated, each report was split into individual sentences and
mapped based on sentence similarity to their corresponding ground truth sentence. We used
Llama 3.1 to identify the error type in each sentence and screen for prior reports.29 Llama 3.1
was chosen instead of GPT-4o for error relabeling due to its sufficient accuracy and greater
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Table 4. Examples of ground truth and error sentences generated through the ReXErr sentence
splicing and labeling pipeline.

Original Sentence Error Sentence Label Error Class Index
Findings: Comparison is made to

previous study from .

Findings: Comparison is made to

previous study from .

2 Not Applicable 0

There is a right-sided PICC line
with distal lead tip at the cavoatrial

junction.

There is a right-sided PICC line
with distal lead tip at the mid SVC.

1 Change Position of
Device

1

There has been removal of the

right-sided chest tube.

There has been removal of the

right-sided chest tube.

0 Not Applicable 2

There remains a curvilinear tubular

device projecting over the
mediastinum.

There remains a curvilinear tubular

device projecting over the
mediastinum.

0 Not Applicable 3

This has been seen on multiple

images.

This has been seen on muitiple

images.

1 Add Typo 4

There is persistent opacity at the

left mid lung field and left-sided
pleural effusion which is stable.

There is persistent opacity at the

left mid lung field and left-sided
pleural effusion which stable.

1 Add Typo 5

There is no pulmonary edema. There is no pulmonary edema. 0 Not Applicable 6

The right lung is relatively clear. The right lung is relatively clear. 0 Not Applicable 7

The patient has had placement of an

endotracheal tube.

1 Add Medical

Device

8

cost-efficiency. The model was prompted to produce a Python dictionary with two keys: ”label”
and ”error class.” The ”label” key indicated whether the sentence was correct (0), erroneous
(1), or neutral (2), while the ”error class” key specified the error type, if applicable. The
”Add Repetition” error category was excluded, as repetition is only relevant at the report
level, and ”Add Opposite Sentence” was reclassified as ”False Prediction.” In cases where a
new sentence was added, the original sentence field was left blank, and for omitted sentences,
the error report sentence was left blank. Through this methodology, we are able to provide
side-by-side comparisons between individual sentences and their associated error sentences.
The order of sentences within the original report is maintained, including the position of
particular added or omitted error sentences. The sentences were manually reviewed to ensure
the accuracy of the sentence splicing.

3.4. Validating Error Injection Pipeline

In order to validate the quality and efficacy of our error injection pipeline, we analyze the
projected frequency of every single error category injected across the MIMIC train, dev, and
test subsets. Furthermore, a clinician reviewed 100 paired original and error-injected reports
to determine the fraction of error reports which are plausible AI-generated or human-written
reports. This was done to determine whether the synthesized error reports contain language
atypical to radiology reports or very obvious modifications and statements that are not med-
ically plausible which might limit the utility of the synthetic error reports.
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Table 5. Distribution of errors inserted across the MIMIC
train, dev, and test sets using the ReXErr methodology.

Error Category Train (%) Dev (%) Test (%)

Add Medical Device 33.33 33.32 33.33

Change Name of Device 13.64 13.47 18.91
Change Position of Device 13.64 13.47 18.91

Change Severity 28.71 29.88 30.18
Change Location 38.07 37.07 23.26

False Prediction 33.33 33.32 33.33

False Negation 33.33 33.32 33.33
Change Measurement 5.93 6.10 7.01

Add Opposite Sentence 25.00 24.97 24.99

Add Repetitions 25.00 24.97 24.99
Change to Homophone 25.00 24.97 24.99

Add Typo 25.00 24.97 24.99

4. Results

4.1. Strengths and Limitations of ReXErr

The ReXErr pipeline was found to proficiently generate errors across all of the error categories
listed for the majority of radiology report inputs. It is able to create multiple types of errors in
the same report, with variation within each error subtype as well. These errors closely mimic
those found in real-world report generation scenarios. Table 3 includes three examples of error
reports generated using our report-level error injection pipeline, while Table 4 presents several
examples of the sentence-level error generation process, along with the error labeling scheme.
Despite ReXErr’s ability to generate errors within the findings and impressions sections, there
are still limitations in its ability to maintain consistency in the error injections across both
sections. For example, while the first example in Table 3 is handled well, others such as the
measurement change in the third example show discrepancies.

4.2. Consistency Across Error Types

ReXErr also demonstrates reasonable consistency in distribution of errors inserted across the
MIMIC train, dev, and test sets. Certain errors, including “change measurement”, “change
name of device”, and “change position of device” are injected less frequently in the dataset due
to their reduced prevalence in the original reports. While the weighting mechanism used during
sampling helped augment this discrepancy, this quantitative analysis highlights key areas for
targeted improvements in developing more robust error injection and correction methods.
Table 5 outlines the frequencies of each error type across the train, dev, and test sets, with
each value representing the percentage of reports within the given set containing that specific
error. Notably, these percentages are relatively consistent across the three different splits.

4.3. Plausibility of Errors

Lastly, ReXErr was found to predominantly inject plausible errors within reports. Plausible
errors are mistakes that could reasonably occur in real-world radiology practice, while implau-
sible errors involve anatomical impossibilities or fundamental misunderstandings of medical
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principles that would otherwise never be made. Examples of implausible errors include sub-
stituting one medical device for another inappropriately (replacing ”pacemaker” with ”ET
tube” in ”A pacemaker is present with leads in the right ventricle”), or attributing findings to
anatomical structures beyond the chest x-ray image. In the sample of 100 ground truth and
error-injected reports reviewed by a board-certified clinician, 83 of the modified reports were
found to be plausible, while only 17 contained errors that were implausible in AI-generated
or human reports.

5. Discussion

Throughout this paper, we present ReXErr, a new pipeline designed to generate clinically
relevant and plausible errors. Despite ReXErr’s demonstrated capability to inject diverse er-
rors, certain limitations that may hinder its use. Firstly, the applicability downstream models
trained on data generated using ReXErr depends heavily on the quality and clinical rele-
vance of the errors generated. While the majority of ReXErr-generated errors were plausible,
we found 17 out of 100 augmented reports to contain implausible errors, meaning that the
prompting methodology could be further improved before implementation on a larger scale.

Another potential limitation is the error sampling approach. ReXErr’s sampling strategy
does not account for nested compound errors, where errors can belong to more than one cate-
gory, or cases where a sentence can contain multiple errors. Depending on how prevalent such
errors are in actual human or AI generated reports, the absence of these errors could nega-
tively impact ReXErr’s downstream utility. Furthermore, downstream models may struggle to
discriminate errors made in AI-generated text as ReXErr only adds errors to human-generated
reports. Even though the errors themselves are sampled amongst errors commonly made by
AI models, their addition to human generated text may not make them as representative as
errors that were added to AI-generated text.

Lastly, future pipelines could benefit from more extensive downstream model testing using
preliminary data generated. For example, while GPT-4o was chosen for its high performance
and affordability, other open-source LLMs may yield more robust errors, and downstream
testing would help elucidate which models can generate the most effective synthetic errors.
Moreover, downstream testing would help determine whether the changes made to reports are
significant enough for models to discern, as in some cases, the errors added are very minor.

6. Conclusion

Synthesizing accurate radiology reports is both difficult and time consuming, even for medical
professionals. While automated AI generation approaches are promising in alleviating this
workload and more efficiently generating comprehensive reports, they are liable to frequent
errors across report content, linguistics, and consistency. Throughout this paper, we present
the novel ReXErr method for generating annotated errors on both a report and sentence
level. Developed with radiologists, ReXErr captures common AI and human errors in a rep-
resentative and plausible manner, therefore offering a promising avenue for the development
of report screening and correction algorithms as well as improving the accuracy of existing
report generation approaches.

Pacific Symposium on Biocomputing 2025

79



Acknowledgments

We would like to thank Dr. John Farner and Dr. Rohit Reddy for their valuable clinical input
into the error categories and prompts chosen.

References
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Please find the appendix here: https://drive.google.com/file/d/15dCVF8yh8i6UIOaS_
m5-biA28fCSiQjh/view?usp=sharing
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