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Gene-environment interaction (GxE) studies provide insights into the interplay between genetics and 
the environment but often overlook multiple environmental factors' synergistic effects. This study 
encompasses the use of environment by environment interaction (ExE) studies to explore interactions 
among environmental factors affecting lipid phenotypes (e.g., HDL, LDL, and total cholesterol, and 
triglycerides), which are crucial for disease risk assessment. We developed a novel curated 
knowledge base, GE.db, integrating genomic and exposomic interactions. In this study, we filtered 
NHANES exposure variables (available 1999-2018) to identify significant ExE using GE.db. From 
101,316 participants and 77 exposures, we identified 263 statistically significant interactions (FDR 
p < 0.1) in discovery and replication datasets, with 21 interactions significant for HDL-C (Bonferroni 
p < 0.05). Notable interactions included docosapentaenoic acid (22:5n-3) (DPA) - arachidic acid 
(20:0), stearic acid (18:0) - arachidic acid (20:0), and blood 2,5-dimethyfuran - blood benzene 
associated with HDL-C levels. These findings underscore GE.db's role in enhancing -omics research 
efficiency and highlight the complex impact of environmental exposures on lipid metabolism, 
informing future health strategies.  
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1. Introduction

Understanding the intricate interplay between genetics and the environment is pivotal in unraveling 
the complexities of human traits and diseases. While gene-environment interaction (GxE) studies 
have provided valuable insights into how genetic variants interact with environmental factors, they 
often overlook the synergistic effects of multiple environmental variables1,2. This limitation 
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necessitates the need for utilizing environment by environment interaction (ExE) studies, which 
explore how different environmental factors interact with each other to influence phenotypic 
outcomes. The outcomes of interest used in this study are lipid traits, including high-density 
lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C), total cholesterol, 
and triglycerides, all of which are important risk factors for a multitude of diseases3–5. It is well 
established that lipid traits are influenced by a variety of factors, including genetic inheritance, 
environmental and occupational exposures, medication use, ethnicity, and sex6,7. In this study, we 
define environmental exposure as any physical, chemical, or biological agent that someone is 
exposed to and has potential to cause a wide range of health effects. The dietary exposures in this 
study refer to the intake of nutrients that can either benefit, harm, or have no effect on one's health. 

Due to the scale of risk variables available in contemporary cohort and biobank datasets, many 
researchers perform variable selection (or filtering) prior to statistical or computational modeling. 
The shift towards knowledge-based filtering in these studies has been shown to be an effective 
alternative to main effect filtering (whereby variables are filtered based on having a statistically 
significant independent effect), especially for variables that only exhibit an effect in the context of 
another variable. The incorporation of prior biological knowledge to prioritize genetic variants that 
are more likely to interact with one another has revealed numerous GxG for complex diseases8-11. 
However, these studies have been restricted to knowledge about genes and have not included 
knowledge of the biological relationship between exposures. Thus, we propose that ExE coupled 
with knowledge-based filtering represents a promising approach to further elucidate the 
complexities of ExE in health and disease. This paper introduces the Gene x Exposome database 
(GE.db) module of the Integrative Genome-Exposome Method (IGEM) system12, a knowledge base 
of genomic and exposomic interactions derived from various public databases [see Methods]. The 
development of GE.db aims to leverage prior knowledge to filter high-volume research datasets, 
retaining only variables with known biological relationships. This approach significantly reduces 
the number of variables for analysis, conserves computational resources and processing time, and 
minimizes type I errors following multiple testing corrections. 

To demonstrate the utility of GE.db, we conducted an ExE analysis with lipid traits using the 
National Health and Nutritional Examination Survey (NHANES)13 data from 1999-2018. By 
focusing on an exposome-wide interaction approach and utilizing GE.db, this research can provide 
important insights for the prevention and management of lipid-based health risk factors. 
Additionally, this study highlights the potential of GE.db to enhance the efficiency and accuracy of 
-omics research by providing a knowledge base resource for filtering datasets based on known 
interactions, thereby facilitating more focused and reliable statistical and computational analyses. 

2.   Methods 

2.1 NHANES Dataset 

The National Health and Nutrition Examination Survey (NHANES) is an ongoing initiative 
conducted by the Centers for Disease Control and Prevention (CDC) aimed at evaluating the health 
and nutritional status of the U.S. population14. Its primary objectives include identifying risk factors 
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for prevalent diseases and informing the development of public health policies. Data collection 
encompasses a wide range of participant information including demographics, dietary recalls, health 
examinations, toxin exposures, and laboratory measurements, all obtained through structured 
interviews and physical examinations conducted either at participants' homes or mobile testing 
centers. 

Datasets were extracted from the NHANES website15, covering the cycles from 1999 to 2018. 
Specifically, the focus was on testing the exposomic variables only for this study. These datasets 
were integrated into a comprehensive table, where each row corresponds to a participant and each 
column represents a specific NHANES variable. This cumulative dataset consists of 101,316 
participants and 11,274 variables spanning multiple domains, including demographic, dietary, 
health, examination, laboratory, questionnaire, socioeconomic, and occupational categories 
including all phenotype, exposure, and covariate information sourced from the NHANES database. 
From this comprehensive data, we were able to select the specified lipid phenotypes and exposures 
relevant to our study. It is noteworthy that NHANES fields are not consistently maintained across 
cycles; fields may be modified or discontinued over time, posing challenges for longitudinal 
analyses16. 

2.2 GE.db 

The GE.db module is an integral component of the IGEM system12, designed as a comprehensive 
knowledge base of genomic and exposomic interactions. This module aggregates data from various 
public databases, providing a curated repository of interactions that can be leveraged to filter high-
volume research datasets effectively. The primary purpose of GE.db is to utilize prior knowledge of 
gene-exposure and exposure-exposure interactions to filter datasets, thereby retaining only variables 
with known biological relationships. The aim of strategic filtering is to significantly reduce the 
number of variables requiring analysis so as to conserve computational resources, reduce processing 
time, and minimize the occurrence of type I errors after multiple testing corrections. 

2.2.1 Data Sources 

GE.db derives its data from multiple reputable public databases that are frequently updated and 
maintained. As a foundational step in developing the exposure terms, IGEM incorporates an 
integration system of environmental and genetic data as it uses a rigorous process of standardizing 
and mapping terms. To facilitate this task, we use MeSH (Medical Subject Headings)17 from the 
National Center for Biotechnology Information (NCBI), a widely recognized database of biomedical 
descriptors, as part of the word pre-processing procedure. The main function of MeSH in IGEM is 
to serve as a reference dictionary to standardize and consolidate different forms of terms that appear 
in various data sources. For instance, in the context of chemical exposures, the same chemical 
compound might be referred to in different ways, either by its chemical formula (e.g., "C6H12O6" 
for glucose), its full name (e.g., "glucose"), or a numeric code or identifier. The word pre-processing 
procedure in IGEM uses MeSH to identify all these variations and then assigns a unique and 
consolidated identifier to each term. This unified identifier ensures that IGEM recognizes all these 
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forms as the same concept, providing consistency across the data and facilitating the integration of 
external sources. Moreover, this mapping allows IGEM to link data from multiple external 
databases, ensuring that the same terms can be identified in different contexts, such as environmental 
exposures or clinical records, regardless of how they were originally represented. The final product 
is a standardized and unified knowledge base that simplifies the analysis of interactions of the 
environmental terms, improving both the efficiency and accuracy of scientific discoveries. 
  For this analysis, the following databases were considered as they provide relevant 
environmental information: Human Metabolome Database (HMDB)18, a detailed resource 
containing information on small molecule metabolites found in the human body, crucial for 
understanding metabolic interactions and pathways; Comparative Toxicogenomics Database 
(CTD)19, which integrates information on chemical-gene/protein interactions, chemical-disease, and 
gene-disease relationships, facilitating insights into the molecular mechanisms of environmental 
diseases; and Kyoto Encyclopedia of Genes and Genomes (KEGG)20, which provides 
comprehensive data on gene functions, biological pathways, diseases, drugs, and chemical 
substances, supporting the integration of genomic and metabolic information. This methodology 
allowed the identification and recording of interactions where multiple exposure factors were found 
in the same record. 

At the time of analysis, the GE.db contained 1,057,827 terms grouped into categories such 
as anatomy, chemicals, diseases, chromosomes, genes, metabolites, pathways, and SNPs, along with 
15,667,807 interactions among these terms. The GE.db module is designed with a flexible 
architecture that allows for the seamless integration of new data sources. It includes several key 
components: Term Table, which contains key terms and concepts essential for the analysis, 
organized into groups and categories for efficient retrieval; Interaction Table, which stores 
documented interactions between various genomic and exposomic variables, providing a robust 
foundation for filtering datasets; and Mapping Algorithms, which utilize advanced algorithms to 
match external data terms to internal GE.db terms, ensuring consistency and reliability in the 
filtering process. To maintain the GE.db, the IGEM system employs version control routines and 
layers of data ingestion and data transformation to fetch data from their sources and transform them 
into term links (Figure 1).  The GE.filter is another component of IGEM that enables various 
operations on the GE.db knowledge base, including term matching, interaction identification, and 
data reduction. The IGEM system, along with its modules GE.db and GE.filter, is deployed in a 
Python environment on an institutional linux computing cluster. The database utilized is SQLite, 
which currently has a size of 2.7 GB. For a more detailed explanation on the workflow and filtration 
parameters used within each command involving Ge.db and GE.filter, please refer to our user guide 
located on Github21. 

 

Figure 1. Visualization of GE.db workflow from database to interaction term identification. 

Pacific Symposium on Biocomputing 2025

538



2.3Phenotypes and Confounder Variables 

Within the NHANES dataset, specific variables were identified as phenotypes and confounders for 
this analysis. The selected phenotypes included are listed in Table 1. For HDL-C, NHANES altered 
the calculation method for this indicator over different cycles. NHANES encountered method-
related bias for calculating the HDL-C values for 1999-2000, 2001-2002, and 2005-2006; the bias 
for 2003-2004 was acceptable (<4%) and required no correction22. The adjustments implemented 
improved consistency across various years and methodologies, ensuring that the differences 
observed in HDL-C levels more accurately reflected true variations rather than being impacted by 
measurement bias. Consequently, these three fields were maintained separately, creating three 
distinct datasets. The selected confounders included Gender (RIAGENDR), Age (RIDAGEYR), 
BMI (BMXBMI), Race/Ethnicity (RIDRETH1), and Survey Cycle (SDDSRVYR). 

2.4 Adjusting for Cholesterol Medications 
To account for the influence of cholesterol-lowering medications on lipid measurements, we 
adjusted the LDL-C and Total Cholesterol (TC) values for participants who reported using statins 
(Figures S-1,2). This adjustment is crucial for accurately assessing lipid levels and their associations 
with various exposures, as statins significantly alter cholesterol levels. We utilized the NHANES 
dataset RXQ_RX to identify participants who reported using at least one of the following statin 
components: ATORVASTATIN CALCIUM, SIMVASTATIN, PRAVASTATIN SODIUM, and 
FLUVASTATIN SODIUM. 

For these participants, we adjusted the LDL and TC values as follows: LDL-cholesterol 
(LBDLDL) values were divided by 0.7 to account for the reduction effect of statins, and Total 
Cholesterol (LBXTC) values were divided by 0.8 to adjust for statin usage23. By incorporating these 
adjustments, we enhanced the precision of our lipid measurements, ensuring that our analysis of 
exposure-lipid interactions was both accurate and reliable. 

2.5 NHANES Exposure Filtering for the Interaction Models 

To align the NHANES variables with GE.db, all NHANES variable descriptions (excluding lipid 
phenotypes and confounders) were processed through the GE.filter function. GE.filter utilizes an 
internal NLP (Natural Language Processing) engine to identify corresponding GE.db terms based 
on textual descriptions. This process identified 3,619 NHANES variables related to 534 GE.db 
terms.  

A subsequent review of these related NHANES variables identified 1,136 exposure factors, 
corresponding to 217 unique terms. These 217 terms were then used as filter parameters for another 
GE.filter function run, which searched the GE.db knowledge base for all interactions among these 
terms, resulting in the identification of 382,613 putative Exposure x Exposure interactions. We 
performed this step prior to quality controlling the exposure variables, ensuring that only exposures 
present in the NHANES data were included for curation of the interactions to be tested. 

2.6 Quality Control (QC) 
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application of QC procedures to -omics data analyses. The following procedures were applied to 
the NHANES dataset after filtering and modifications from previous steps. 

For continuous data type QC, all variables with more than 90% missing values were removed. 
The distribution of phenotypes was calculated using the skewness (3(mean-median)/standard 
deviation.) and all phenotypes were log-transformed to normalize the distribution (Figure S-3). 

Participants were then separated into discovery and replication groups for the six cohorts of 
phenotypes, resulting in twelve datasets. For each dataset, a minimum of 200 participants for 
categorical and binary exposures was maintained. Only variables present in both discovery and 
replication datasets for each phenotype were retained to ensure consistency and reliability (Table 
1). 

Table 1. Overview of lipid phenotypes sorted by survey cycle, including sample sizes, exposures, and interactions 
that passed quality control. 

Phenotype 

NHANES 

Cycles 

NHANES 

ID 

NHANES 

Description 

N 

Discovery 

N 

Replication Exposures Interactions 

HDL-C 1999 – 2002 LBDHDL HDL-cholesterol, mg/dL 4,572 4,949 96 2,073 

HDL-C 2003 – 2004 LBXHDD Direct HDL-Cholesterol, mg/dL 3,425 1,469 219 11,093 

HDL-C 2005 – 2018 LBDHDD HDL-Cholesterol, mg/dL 21,442 16,000 231 11,721 

LDL-C 1999 – 2018 LBDLDL LDL-cholesterol, mg/dL 11,453 12,695 181 6,934 

Total Cholesterol 1999 – 2018 LBXTC Total Cholesterol, mg/dL 24,836 27,023 193 7,873 

Triglycerides 1999 – 2018 LBXSTR Triglycerides, mg/dL 19,305 26,916 177 6,446 

2.7 Statistical Analysis Models (Discovery and Replication) 

The IGEM system, inheriting functionalities from the CLARITE system24, performs interaction 
analyses by calculating the p-value of the Likelihood Ratio Test (LRT) between two models. In the 
full and reduced model Yphenotype is the outcome variable, β0 is the intercept, β1term1 and β2term2 are 
the coefficients for the individual predictors, and βn+1covn  are the coefficients for the covariates with 
n adding on to the number of covariates used in the model. Exclusive to the full model, β3(term1 x 
term2) is the interaction term between term 1 and term 2. 

Full Model: 

Yphenotype = β0 + β1term1 + β2term2 + β3(term1 x term2) + β4cov1 + … + βn+1covn (1) 

Reduced Model:

Yphenotype = β0 + β1term1 + β2term2 + β3cov1 + … + βn+1covn (2) 
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The LRT is utilized to compare the fit of the two models, with the full model including the 
interaction term (β3(term1×term2)) and the reduced model excluding it. The analysis involves fitting 
the full model to the data to obtain the log-likelihood (Lfull) and fitting the reduced model to obtain 
the log-likelihood (Lrestricted). The LRT statistic represented as D with -2 used as a scaling factor that 
makes the likelihood ratio test statistic approximately follow a chi-squared distribution under the 
null hypothesis is calculated as: 

D=−2(Lrestricted−Lfull) (3)  

The difference in degrees of freedom between the two models is 1, since the full model has one 
additional parameter (β3(term1×term2)). The p-value is derived from the probability (P) that a 
random variable following a chi-squared distribution (χ2) with 1 degree of freedom takes a value 
greater than or equal to the observed test statistic (D): 

p-value = P(χ2 ≥ D | df = 1) (4) 

The LRT p-values were calculated for each interaction identified in the discovery dataset for 
each phenotype. 

However, in some cases, the p-value of the LRT cannot be calculated. The following messages 
inform the user of the reasons:  

- Too few complete observations (min_n filter: N < 200) 
- The number of complete observations is insufficient to perform the analysis, as the minimum 

required is 200 
- Both models are equivalent in terms of fit: the two models are equivalent in terms of fit, with 

no significant difference between them 
- No Overlap (min_n filter: 0 < 200): there is insufficient data overlap to perform the analysis, 

as the minimum required is 200. 
Following the interaction model analysis, the IGEM function was applied to adjust the p-values 

for multiple testing using both Bonferroni correction and False Discovery Rate (FDR) adjustment. 
From the discovery analysis, interactions with an FDR-adjusted p-value < 0.1 were filtered. These 
significant interactions that met the FDR adjustment threshold were then tested in the replication 
dataset. The same interaction analysis was conducted in the replication cohort, applying identical 
model specifications and LRT. The replication criteria also required that interactions exhibit 
consistent directional effects between the discovery and replication interaction betas, with all 
significant interactions retaining a Bonferroni-adjusted p-value < 0.05, across both datasets. This 
rigorous approach ensures that the identified interactions are robust and not due to random chance. 

3. Results

In this study, we examined the interactions between various exposure variables and lipid phenotypes 
using the NHANES dataset. We performed a comprehensive analysis to identify significant 
exposure-exposure interactions (ExE) that are associated with lipid levels. Below are the key 
findings from our discovery and replication datasets. Of all the 26,107 interactions tested that 
included exposures that passed QC, a total of 263 interactions were statistically significant in the 
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discovery dataset with an FDR p < 0.1 (Table 2). A total of 61 interactions were found to be 
significant in both discovery and replication when allowing for an FDR p < 0.1 (assorted by lipid 
phenotype) and 21 interactions associated with the HDL-cholesterol trait was significant with a 
Bonferroni corrected p < 0.05 (Figure 2). Additionally, these interactions demonstrated consistent 
directions of effect across both discovery and replication datasets (Table S-1). 

Table 2. Frequency table of all the interactions tested for every lipid phenotype. 

Phenotype 

Discovery 

Interactions 

Replication 

Interactions 

FDR 

p < 0.1 in both 

Bonferroni 

p < 0.05 in both 

HDL-C [1999-2002] 1,116 4 1 1 

HDL-C [2003-2004] 5,459 93 2 0 

HDL-C [2005-2018] 6,584 141 58 20 

LDL-C 4,339 9 0 0 

Total Cholesterol 4,764 10 0 0 

Triglycerides 3,845 6 0 0 

Total 26,107 263 61 21 

Figure 2. The sixty-one significant results starting from the top showcasing all the interactions with FDR LRT p-value 
< 0.1(denoted by the redline) and the twenty-one significant results with a Bonferroni adjusted LRT p-value < 0.05 
(direction of effect pointing down is negative and up is positive), the interaction beta for both exposures, and the 
sample sizes. PheWAS-View was the software used to generate this plot25. 
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 3.1 Significant Interactions 
The top three results with the lowest LRT p-values associated with HDL-cholesterol include: 1) 
Docosapentaenoic acid (22:5n-3) (DPA) - arachidic acid (20:0) (Discovery: Bonferroni adjusted 
LRT p-value = 8.43×10-13, β = -1.4×10-4; Replication: Bonferroni adjusted LRT p-value = 3.25×10-

4, β = -1.2×10-4) (Figure 3A). 2) Blood 2,5-dimethyfuran - blood benzene (Discovery: Bonferroni 
adjusted LRT p-value = 2.75×10-7, β = 0.97; Replication: Bonferroni adjusted LRT p-value = 
4.48×10-12, β = 0.78) (Figure 3B). 3) Stearic acid (18:0) - arachidic acid (20:0) (Discovery: 
Bonferroni adjusted LRT p-value = 8.88×10-12, β = -7.79×10-6; Replication: Bonferroni adjusted 
LRT p-value = 3.47×10-7, β = -1.26×10-5) (Figure 3C). 

(A) Docosapentaenoic acid (22:5n-3) and arachidic acid (20:0) association with HDL-C in the discovery dataset 

(B) Blood 2,5 dimethylfuran (ng/ml) and blood benzene (ng/ml) association with HDL-C in the replicate dataset 
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(C) Stearic acid (18:0) (umol/l) and arachidic acid (20:0) (umol/l) association with HDL-C in the discovery dataset 

Figure 3A-C. The top three results plots observing the individual main effect correlation line, and the 3D plot showing 
the interaction correlation along the square plane. 

4. Discussion

In this study, we leveraged the comprehensive exposomic knowledge base provided by the GE.db 
module of IGEM to investigate exposure-exposure interactions (ExE) associated with lipid 
phenotypes. By utilizing data from the NHANES dataset spanning 1999 to 2018, we identified 
several significant interactions between various exposures and lipid levels. The replication of these 
findings across independent datasets underscores the robustness of our approach and highlights the 
potential of GE.db in facilitating large-scale -omics research. 

4.1 Clinical and Public Health Implications 

Our analysis revealed several key interactions, notably DPA and stearic acid with arachidic acid 
associated with HDL-C. DPA is a known essential omega-3 fatty acid, and stearic and arachidic 
acid are saturated fatty acids26-28.  These results suggest that specific combinations of environmental 
exposures may have synergistic effects on lipid metabolism, though most research only touches on 
their individual effects on lipid profiles. For instance, omega-3 fatty acids, such as DPA, are 
generally linked with increased HDL cholesterol levels29, while high consumption of saturated fatty 
acids like arachidic acid may unfavorably affect lipid profiles, potentially leading to elevated LDL-
C levels27. Our findings indicate a negative impact on HDL-C when arachidic acid interacts with 
fatty acids typically associated with positive HDL-C effects, suggesting that arachidic acid could 
potentially diminish the benefits of HDL-C promoting fatty acids. Other research suggests that 
stearic acid may have a neutral or even beneficial effect on cholesterol levels, possibly not adversely 
affecting HDL-C on its own30. However, as seen in our results, when combined with arachidic acid, 
this interaction could overall have a negative impact, counteracting any neutral or positive effects 
on HDL-C. 

Additionally, the interaction between blood 2,5-dimethylfuran and blood benzene highlights the 
potential combined impact of exposure to volatile organic compounds (VOCs) on HDL-C levels. 
Benzene has been observed to increase LDL-C levels which would naturally displace or plateau 
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HDL-C levels procuring a negative effect31,33. Measures of 2,5-dimethyfuran though, have limited 
research indicating influence on lipids, but may pose health risks similar to other VOCs. These risks 
can include respiratory irritation, and potential systemic effects that could indirectly affect lipid 
metabolism and cardiovascular health34–36. Conversely, our results demonstrate a positive 
interaction effect on HDL-C with benzene and 2,5-dimethylfuran. Therefore, further study of this 
interaction is warranted, especially considering the known detrimental impact of VOCs on public 
health. In summary, all these findings have important implications for public health, as they point 
to the need for considering multiple concurrent exposures in dietary and environmental risk 
assessments. Public health strategies could be developed to mitigate the combined effects of specific 
dietary and environmental exposures on lipid metabolism. 

4.1.1 Significant Interaction Effects Sizes 
As stated previously for HDL-C, the bias adjustment was accounted for whether the survey cycle 
year had been corrected or not as they were all approved to use for statistical analysis. The HDL-C 
variable still had to be labeled and categorized differently to identify which ones were corrected vs. 
not corrected for transparency. Given that the LBDHDD variable spanned the largest survey cycle 
from 2005-2018 of the three, showed an increased sample size disparity by about 17,000 participants 
when comparing the other two survey cycles which had around 4,000 participants each. Thus, 
presuming that even if the effect size remains similar across those survey cycles, a larger sample 
size in one cycle can lead to a significant p-value, while a smaller sample size in another cycle could 
result in a non-significant p-value for the same effect size. 

Regarding the effect sizes of the three significant interactions mentioned, we believe the 
positive beta for DPA can coexist with a slight negative trend due to the small effect size and 
interaction with arachidic acid (Figure 3A).  The combined effect of DPA and arachidic acid as 
described by the interaction term, may influence the overall outcome more than the individual effect 
of DPA alone. In the dataset, the interaction between the two terms might reduce or counterbalance 
DPA’s small positive effect on HDL-C. Figure 3B depicts another story where the two weaker effect 
sizes of blood 2,5-dimethylfuran and blood benzene alone hold less weight than compared to the 
larger effect size of when both blood 2,5-dimethylfuran and blood benzene increase together. Their 
combined effect led to an overall increase in HDL-C despite their individual negative contributions. 
Lastly, the negative interaction effect size for stearic acid and arachidic acid is very small in 
association with HDL-C, and largely driven by the positive influence of arachidic acid (Figure 3C). 
The overall interaction appears to slightly counteract the combined positive effects of both terms 
but not enough to reverse the trend significantly. Thus, a large amount of the variation is most likely 
not fully explained in this model and further testing is required. 

4.2 Methodological Strengths, Limitations, and Future Directions 

A major strength of this study is the use of the GE.db knowledge base, which allowed us to filter 
high-volume research datasets effectively, focusing only on variables with known biological 
relationships. This approach significantly reduced the computational burden and enhanced the 
reliability of our findings by minimizing type I errors through multiple testing corrections. By 
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employing multiple IGEM modules, we streamlined quality control (QC) processes, which involved 
variable categorization, data cleaning, and adjustment for confounders like statin use. This approach 
improved the integrity and accuracy of our analysis, making it user-friendly for whomever uses this 
tool, and ensuring alignment to bioinformatics practices. The split of data into discovery and 
replication datasets based on NHANES cycles further increased the validity of our results, as 
significant interactions identified in the discovery phase were consistently replicated. Another 
consideration to note is the main-effect interaction model when incorporated without the use of 
knowledge-driven filters, is typically performed to determine the isolated impact of each variable 
(in this case, each exposure factor) on phenotypes. However, the goal of this study was not to 
identify individual main effects but to examine how the combination of multiple exposures 
influences lipid phenotypes. While the standard main-effect model is valuable in other contexts like 
simple-trait analysis or in situations where the effects of multiple variables are purely additive, our 
primary focus was to highlight IGEM's strengths, particularly in capturing interactions based on the 
pre-existing knowledge within GE.db. GE.db was specifically designed to filter highly relevant 
variables based on known relationships between exposures. Using this filtering approach allows the 
analysis to focus on variables with biological context, avoiding the processing of many irrelevant 
exposures or statistical noise that could arise when including non-interactive main effects. 

Despite the robustness of our findings, several limitations warrant consideration. First, since 
GE.db relies on public databases such as HMDB, CTD, and KEGG, the quality, completeness, and 
update frequency of these external databases can directly affect the accuracy and relevance of the 
information in GE.db. Any gaps, errors, or outdated information in these sources could introduce 
bias or limitations in the results. Regular updates are imperative to ensure the data remains current, 
but the complexity of fetching and processing new data might slow down the user’s analysis 
pipeline. Furthermore, the interactions stored in GE.db are curated from specific sources, and their 
generalizability to other populations, environmental contexts, or less-studied interactions may be 
limited. Results may not always be applicable outside the scope of the databases from which they 
were derived. 

In the context of the NHANES dataset, the observational nature of the data limits the ability to 
infer causal relationships between exposures and lipid levels. Interaction effects, as we have noted, 
may have opposite signs of effect when compared to the main effect betas, which complicates the 
interpretability of the results. Other datasets with repeated measures of QC and analysis as we have 
specified with the NHANES data, can help with cross checking all the betas, refining the elucidation 
of significant interactions. Inclusion of more datasets that host the same kinds of environmental 
exposures such as the UK Biobank37 and All of Us Research Program38, will also help address the 
possibility of false negatives as some interactions may not have been flagged as significant given 
our designated thresholds used for the NHANES dataset. Future studies could also incorporate 
longitudinal data and more sophisticated causal inference methods to address this limitation. 

Moreover, while our analysis accounted for several covariates, there may be other unmeasured 
factors that could influence the observed interactions. Further research should aim to include a 
broader range of potential confounders and explore the underlying biological mechanisms driving 
these interactions. Another limitation is the reliance on self-reported data for certain exposures, 
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which may introduce reporting biases. The integration of more objective measures of exposure, such 
as well-established biomarkers, could enhance the reliability of future analyses. 

4.3 Conclusion 

In conclusion, this study demonstrates the utility of the GE.db module in identifying significant ExE 
influencing lipid traits. The consistent replication of key interactions across independent variables 
highlights the robustness of our approach and its potential to uncover future novel insights into the 
complex interplay between environmental exposures and lipid metabolism. These findings pave the 
way for future research aimed at understanding and mitigating the multifactorial nature of 
dyslipidemias, ultimately contributing to improved public health outcomes. 

This project was supported by the the National Institute of Child Health and Human Development 
under award number U2C OD023375-06 and the National Heart Lung, and Blood Institute under 
awards HL169458 and HL168841. This work was additionally supported by the USDA National 
Institute of Food and Agriculture and Hatch Appropriations under Project #PEN04275 and 
Accession #1018544. 

Code for GE.db, GE.db filter, and quality control steps used in this study are made available here: 
https://github.com/HallLab/pbs_igem/tree/main. The IGEM package and user guide are available 
here: https://github.com/HallLab/IGEM. 
Supplemental table and figures S-1, S-2, and S-3 are available at 
https://ritchielab.org/publications/supplementary-data/psb-2025/igem. 
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