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Adverse drug responses (ADRs) result in over 7,000 deaths annually. Pharmacogenomic studies have 
shown that many ADRs are partially attributable to genetics. However, emerging data suggest that 
epigenetic mechanisms, such as DNA methylation (DNAm) also contribute to this variance. 
Understanding the impact of DNA methylation on drug response may minimize ADRs and improve 
the personalization of drug regimens. In this work, we identify DNA methylation sites that likely 
impact drug response phenotypes for anticoagulant and cardiometabolic drugs. We use instrumental 
variable analysis to integrate genome-wide association study (GWAS) summary statistics derived 
from electronic health records (EHRs) within the U.K. Biobank (UKBB) with methylation 
quantitative trait loci (mQTL) data from the Genetics of DNA Methylation Consortium (GoDMC). 
This approach allows us to achieve a robust sample size using the largest publicly available 
pharmacogenomic GWAS. For warfarin, we find 71 DNAm sites. Of those, 8 are near the gene 
VKORC1 and 48 are on chromosome 6 near the human leukocyte antigen (HLA) gene family. We 
also find 2 warfarin DNAm sites near the genes CYP2C9 and CYP2C19. For statins, we identify 17 
DNAm sites. Eight are near the APOB gene, which encodes a carrier protein for low-density 
lipoprotein cholesterol (LDL-C). We find no novel significant epigenetic results for metformin. 

Keywords: Pharmacogenomics; Pharmacoepigenetics, Biomarkers, DNA methylation, Electronic 
Health Records, Biobanks, Personalized Medicine.* 
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1.  Introduction 

Adverse drug reactions (ADRs) lead to hundreds of thousands of deaths and hospitalizations each 
year.1 Pharmacogenomic (PGx) studies show that genetic differences contribute to individual 
variance in response and are a source of ADRs because metabolic differences lead to higher-than-
expected or lower-than-expected drug levels.2 However, genetics alone do not explain all variance 
in drug response. Epigenetic modifications, such as DNA methylation (DNAm), have also been 
implicated.3 For example, clopidogrel resistance is associated with DNA methylation near the genes 
BTG anti-proliferation factor 2 (BTG2), proteoglycan 2 (PRG2), vault RNA 2-1 (VTRNA2-1), and 
Period Circadian Regulator 3 (PER3).4 While our DNAm profile may affect how we respond to many 
drugs, knowledge of specific interactions that allow prediction of variable drug response is limited.3 
Identifying methylation biomarkers for individual drugs may facilitate the reduction of adverse drug 
reactions. 
 PGx Genome-Wide Association Study (GWAS) reports have elucidated which genes and single 
nucleotide polymorphisms (SNPs) are associated with diverse drug response phenotypes.5 However, 
these studies are limited by the fact that they do not account for epigenetic modifications. 
Pharmacoepigenetic (PEGx) studies, such as epigenome-wide association studies (EWAS) identify 
associations between DNAm and drug response phenotypes. However, these studies are limited both 
in number and statistical power. For example, there is currently one EWAS study on statins (linking 
statin use and type 2 diabetes, N = 6,820) in the EWAS catalog.6,7 There are no studies on warfarin 
or metformin response.7 
 Instrument variable (IV) approaches are an alternative method to elucidate likely-causal 
interactions between an exposure (DNAm) and an outcome (drug response) from observational data.8 
Two sample methods allow researchers to integrate summary statistics from PGx GWAS studies 
with methylation quantitative trait (mQTL) data from separate sources to elucidate likely causal 
pharmacoepigenetic effects.9 Moreover, analysis frameworks that use multiple IVs are less prone to 
reverse causality and artifacts arising from linkage disequilibrium (LD) patterns.8 Mendelian 
randomization (MR) IV methods allow for the detection and elimination of pleiotropic markers while 
quantifying the direction and magnitude of causal effects (Figure 1).8 This is key for PEGx studies 
because DNAm patterns change over time, making it challenging to dissect the cause, consequence, 
and confounding of PEGx effects. 
 This approach allows for -omics integration with existing PGx GWAS, identifying causal 
biomarkers such as DNAm. However, many existing PGx GWAS studies are underpowered (median 
sample size = 1220) for a robust statistical analysis.10 While PGx GWAS statistics are more abundant 
than PGx EWAS reports, they still comprise only 10% of all GWAS entries in the GWAS catalog 
from 2016 to 2020.10 A novel alternative method uses Electronic Health Record (EHR) data to 
generate GWAS summary statistics (Figure 1).10 Biobank-generated summary statistics can have a 
large population size (UKBB N ~ 200,000) and have been shown to reflect PGx associations 
previously reported in traditional GWAS studies, albeit with weaker associations due to nosier 
phenotypes.10 
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Fig. 1. Schematic of study design. A) mQTLs are taken from GoDMC in source 1 (left) and EHR 
records are combined with genetic sequences from the UKBB to generate summary statistics for 
data source 2 (right). B) Sources 1 and 2 are combined in a two-sample MR-IVW framework to 
determine the effect of DNAm on drug response (lightning bolt). The necessary assumptions are 
shown in dashed lines. 

 
 We demonstrate the efficacy of this approach in identifying DNAm sites that affect individual 
response to anticoagulant and cardiometabolic drugs. First, we analyze the effect of DNA 
methylation on warfarin response. Individual genetic differences of several genes, including vitamin 
K epoxidase reductase complex subunit 1 (VKORC1), cytochrome P450 family 2 subfamily C 
member 9 (CYP2C9), and member 19 (CYP2C19) are known to affect warfarin response.11,12 
Methylation near VKORC1 has also been associated with differential warfarin response.13 We also 
investigate the effect of DNA methylation on response to cardiometabolic drugs. Specifically, 
b-Hydroxy b-methylglutaryl-CoA (HMG-CoA) reductase inhibitors (common name: statins) and 
metformin. Individual response to these drugs is variable and is measured by low-density lipoprotein 
cholesterol (LDL-C) and total cholesterol (TC) levels for statins, and hemoglobin A1c (HbA1c) for 
metformin.14,15 Some of this variance is explained by genetic factors such as variants in the 
apolipoprotein E (APOE) gene for statins and solute carrier family 2 member 2 (SLC2A2) for 
metformin.16,17 In addition, metformin use is associated with genome-wide changes in DNAm levels, 
and a recent Swedish twin study revealed several DNAm sites associated with statin use.18,19 
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 We report 69 total DNAm sites with an effect on warfarin response. Eight are near the gene 
VKORC1, and 2 are near CYP2C19 and CYP2C9. Most (48) DNAm sites (also called CpGs) are not 
near known pharmacogenomic genes but are located on chromosome 6 near the HLA gene family. 
In the statin analysis, we find 8 CpGs near the apolipoprotein B (APOB) gene in addition to several 
CpGs near genes previously associated with cholesterol levels such as RING finger protein 39 
(RNF39).40,41 We find no novel significant epigenetic results for metformin. These findings allow us 
to better contextualize the role DNA methylation plays in individual drug responses. 

2.  Methods 

2.1.  Genome-wide association summary statistics from electronic health records 

Genome-wide association summary statistics were generated from the EHRs of ~200,000 
participants of the UKBB,20 as described in Sadler et al. 2024.10 Briefly, longitudinal medication 
patterns were analyzed to identify drug type, dose regimens, and drug adherence as well as baseline 
and post-treatment biomarker levels. We used the following pharmacogenetic phenotypes: average 
warfarin daily dose over the past five prescriptions (N = 4,554; McInnes and Altman), 21 cholesterol 
response to statins (N = 26,669 for TC, N = 17,063 for LDL-C),10 and HbA1c response to metformin 
(N = 4,119).10 GWAS on these quantitative traits were conducted with the REGENIE software 
(v3.2.4) in a whole-genome regression model for genetic markers with a minor allele frequency 
(MAF) > 0.05.22 SNPs in high LD regions were removed along with those not passing LD pruning 
at r2 < 0.9.8 

2.2.  Two sample summary statistic instrument variable analysis 

We conducted two sample summary statistic instrument variable analyses using an inverse variance-
weighted framework.8 We used the SMR-IVW software (v1.0) as it allows two-sample IVW analysis 
with GWAS summary statistics.8 The settings were: p-value (p) of mQTLs < 1´10-6, LD r2 < 0.01, 
cis window range of 1,000 kilobases (Kb), and the LD matrix was included in causal effect 
calculations. The tolerated allele frequency difference for each SNP between datasets was 0.1. A 
Steiger filter was implemented as described in Hemani et al. 2017 with a threshold set at -2, 
equivalent to a one-sided t-test p-value threshold of 0.023.23 This strict threshold diminished the 
likelihood of including reverse causal relationships. We used mQTL data from the GoDMC database 
(N = 32,851), which contains > 170,000 whole blood DNAm sites with at least one significant cis-
mQTL (p < 1´10-6, < 1 Mb from the DNAm site, N > 5,000).24 The LD reference panel was from 
the 1,000 Genomes Project.25 

2.3.  Multiple hypothesis correction 

To correct for multiple hypothesis testing, we used a false discovery rate (α = 0.05) calculated by the 
Benjamini-Hochberg method from the statsmodels.stats.multitest (v0.14.2) package for Python.26  
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2.4.  Sensitivity to pleiotropy and heterogeneity analyses 

All CpGs that passed the significant threshold were also pruned to ensure a minimum of 3 
instrumental variables. The remaining CpGs underwent sensitivity analysis. We first calculated a 
Cochran’s Q statistic using the Metagen R package (v4.9.6),27 and the corresponding Chi-Squared 
distribution p-value using the R Stats Chi-Square function (v3.6.2).28 We removed any CpGs with 
significant evidence of heterogeneity (p < 0.05). 8 Next, we calculated an F-statistic (F) and removed 
any results with evidence of weak instrument bias (F < 10). 8 We tested for evidence of horizontal 
pleiotropy by analyzing the intercept values of an MR-Egger regression using the 2SMR package 
(v0.6.6).23 Any CpGs showing significant evidence of pleiotropy (p < 0.05) were removed.  

3.  Results 

3.1 Warfarin MR-IVW results 

Genome-wide hypothesis correction revealed 76 CpGs which exceeded the significance threshold. 
Of these, 69 CpGs showed no evidence of pleiotropy, weak instrument bias, or heterogeneity and 
were considered for further analysis (Figure 2A, Table 1). Eight of these CpGs were cis (within 0.5 
megabases (Mb)) to the gene VKORC1 (Figure 2A). Four had a positive beta (β) value (causing a 
higher warfarin dose) and 4 had a negative β (causing a lower warfarin dose), with absolute value 
effect sizes ranging from |β| = 0.314 to |β| = 0.799. The average absolute-value effect size was "β#" 
= 0.554 with an average standard error (SE####) of 0.046. One CpG (cg15404570) was cis to CYP2C9 
and CYP2C19 and had a positive effect size β = 0.597 and SE = 0.127. Forty-eight CpGs (70% of 
all significant CpGs) were located on the short arm of chromosome 6, between 28.3 and 31.1 Mb 
(Figure 2B). These signals are cis to genes encoding the tripartite motif (TRIM) protein family and 
the HLA protein family (Figure 2B). Twenty-seven of these CpGs had a positive effect size and 21 

Table 1. Results of warfarin GWAS integration. For brevity, CpGs are displayed together if 
they are within approximately 1 Mb. When multiple CpGs are grouped, the CpG information 
represents the signal with the highest absolute value effect size. Full results are available on 
GitHub: https://github.com/smithdelaney/PGx-MR-from-EHR-GWAS. 

CpG Location Number of CpGs β  SE 
cg06617202 1: 205038787 2 0.289 0.071 
cg03935872 2: 17935919 1 0.349 0.086 
cg06197503 3: 36422406 1 -0.286 0.063 
cg10961486 4: 69959004 1 0.145 0.035 
cg27585641 5: 73024506 2 0.336 0.077 
cg15601071 6: 30078080 48 -0.768 0.183 
cg13455759 9: 119655874 1 0.128 0.032 
cg07530925 10: 90564681 1 -0.200 0.050 
cg15404570 10: 96943130 1 0.597 0.127 
cg03708694 11: 44489577 1 0.407 0.093 
cg05555928 11: 63887634 1 0.110 0.027 
cg08374890 16: 31117067 8 0.799 0.030 
cg04077706 19: 43442484 1 0.128 0.030 
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had a negative effect size ("β#" = 0.204, SE####)  = 0.0475). Absolute value effect sizes ranged from |β| 
= 0.057 to |β| = 0.768. 

 
Fig. 2. A) Display of 69 CpGs found in the warfarin analysis. CpGs with a positive effect, or 
higher warfarin dose, (β > 0) are shown in green, and those with a negative effect (β < 0) are 
shown in red. Nearby genes are also annotated. B) Zoomed-in representation of the short arm 
of chromosome 6. 
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3.2 Statin MR-IVW results 

GWAS integration results revealed 8 significant CpGs with LDL-C reduction as the outcome and 
10 additional CpGs for TC reduction. Following quality control testing, 17 CpGs were further 
analyzed (Figure 3, Table 2). The 8 CpGs derived from the LDL-C analysis (47% of all CpGs) 
were cis to the APOB gene, which encodes an LDL-C carrier protein. All effect sizes for these 8 
CpGs were negative, with an average absolute value of "β#" = 0.088, and an average standard error 
of SE#### = 0.018. In this case, a negative β means that statin efficacy is increased since the clinical 
goal of the therapeutic is to reduce cholesterol levels. The absolute value effect size ranged from 
|β| = 0.079 to |β| = 0.108. Two CpGs (cg05337441, cg24309555) were previously annotated for 
TC or LDL-C in the EWAS catalog.7 There were 3 CpGs (cg06028875, cg16908633, cg23752348) 
on the short arm of chromosome 6 which were cis to the RNF39 gene and near the HLA gene 
family (within 1 Mb) (Figure 3). All 3 had a negative effect ("β#" = 0.075, SE####  = 0.016). Five CpGs 
were on chromosome 10, four of which had a positive effect size ("β#" = 0.059, SE#### = 0.015). The 
magnitude of these effect sizes ranged from |β| = 0.031 to |β| = 0.158. Additional genes associated 
with TC CpGs were DPY30 domain-containing proteins 1 and 2 (DYDC1/C2), erythroblast 
transformation-specific (ETS) proto-oncogene 2 (ETS2), tetraspanin 14 (TSPAN14), and 
peroxiredoxin-like 2A (PRXL2A) (Figure 3). 

Table 2. Results of statin GWAS integration. For brevity, CpGs are displayed together if they 
are within approximately 1 Mb of each other. When multiple CpGs are grouped, the β is the 
absolute value average and the CpG name and location represent the signal with the highest 
absolute value effect size. Full results are available on GitHub: 
https://github.com/smithdelaney/PGx-MR-from-EHR-GWAS. 

 
CpG Location Number of CpGs β SE 

cg00673290 2:21266727 8 -0.108 0.020 
cg06028875 6: 30042295 3 -0.087 0.019 
cg02750471 10: 82179740 5 0.158 0.031 
cg15892280 21:40180000 1 0.088 0.019 
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Fig. 3. Display of 17 CpGs found in the statin analysis. CpGs with a positive effect (β > 0) are 
shown in green and those with a negative effect (β < 0) are shown in red. A negative effect in 
this study means increased statin efficacy. Nearby genes are also annotated. 

Discussion 

In this study, we provide evidence that DNA methylation plays a causal role in individual response 
to warfarin and statins. Probing PEGx effects using EWAS studies provides correlative associations 
between DNAm sites and drug response phenotypes. Our approach uses existing information to infer 
directional, causal, and quantitative effect estimates. In our warfarin analysis, 8 CpGs were cis to 
VKORC1. Warfarin’s mechanism of action targets VKORC1, and genetic variations in VKORC1 are 
known to modulate warfarin’s efficacy.11,12 Recent findings also implicate cis DNA methylation near 
VKORC1 in warfarin response.13 In addition, we find 8 CpGs cis to APOB in the statin analysis. 
APOB encodes an LDL-C carrier and has 187 GWAS associations in the GWAS Catalog with LDL-
C and 125 with TC.29 Two of the CpGs we identified also had previous annotations for LDL-C or 
TC.7 Thus, our approach captures the known effects of DNA methylation on drug response. We also 
show that in the case of metformin, no novel significant DNA methylation effects were detected. 
This could be because there is no biological effect or because the GWAS is underpowered.10 
 Our method depends on the assumptions underlying IV analysis. The first assumption is that 
there is a sufficiently strong relationship between the instrumental variables (SNPs) and the exposure 
(DNAm). The second assumption (independence) is that instrumental variables are independent of 
confounders. The third assumption (exclusivity) is that any effect the SNP has on the outcome is 
mediated only through the exposure (no horizontal pleiotropy). The first assumption can be tested by 
selecting highly significant mQTL effects (p < 1´10-6) and performing a weak instrument bias test 
(F-statistic).8 The second and third assumptions are violated when results show evidence of 
heterogeneity, horizontal pleiotropy, or the presence of invalid instruments. We use Cochran’s Q test 
to detect evidence of heterogeneity, and the presence of invalid instruments.30 MR-Egger regression 
intercepts detect the presence of horizontal pleiotropy.9 In addition, these assumptions may not hold 
in the presence of LD between the mQTLs and SNPs. The risk of ‘LD-hitchhiking’ leading to 
spurious results is managed by selecting CpGs with a minimum of 3 instrumental variables, filtering 
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out SNPs in high-LD regions, pruning for independence, and using a Steiger filter for directionality.8 
In our analysis, we excluded 7 warfarin CpGs and 1 statin CpG which did not pass all these controls. 
However, the possibility of horizontal pleiotropy can never be fully excluded.  
 Our results show DNA methylation CpGs cis to warfarin pharmacogenomic genes, VKORC1, 
CYP2C9, and CYP2C19.11,12 Therefore, individuals’ methylation profiles may account for some of 
the variability in warfarin response not captured in pharmacogenomic models. The 8 VKORC1 CpGs 
had effect sizes in both positive and negative directions, indicating that while the presence of some 
CpGs reduced the average daily dose of the patient, others likely led to an increase. Seventy percent 
(70%) of effect CpGs were located near the HLA and TRIM genes on chromosome 6 (Figure 2B). 
The CpGs were closest to several TRIM genes (TRIM26, TRIM27, TRIM31, and TRIM40). These 
genes encode proteins that have varied and widespread functionality. DNAm may regulate the 
expression of TRIM genes, which have many downstream effects, possibly including modulating 
blood clotting pathways. However, recent work on DNA methylation and gene expression shows 
that methylated sites can act distally to influence the expression of neighboring genes.3,24,31,32 Thus, 
an alternative hypothesis is that these CpGs impact the expression of the HLA genes, which are 
interlaced with TRIM genes on chromosome 6 (Figure 2B). Genetic polymorphisms in HLA genes 
have previously been associated with blood disorders including acquired hemophilia A, venous 
thrombosis, immune thrombotic thrombocytopenic purpura, and sickle cell disease.33-36 Therefore, 
the pre-existing association between HLA genes and blood diseases may manifest through altered 
warfarin response, which is affected by DNA methylation near these genes. 
 Our statin results show that causal CpG identified in this study are not located near known 
pharmacogenomic genes. Instead, 47% of CpGs are cis to APOB, which encodes an LDL-C carrier 
(Figure 3). These CpGs all have an average effect size of "β#" 0.087, all with a negative direction, 
meaning that methylation in this region causes a decrease in measured LDL-C in response to starting 
statin treatment. Therefore, the presence of these CpGs causes improved efficacy of statin treatment. 
 Another apolipoprotein gene, APOE, has over 20 variant annotations for statin efficacy in the 
PharmGKB pharmacogenomic database.37 Both APOB and APOE are carriers of LDL-C and other 
lipoproteins. While APOB does not have PharmGKB annotations for statins, there are several genetic 
variants within the gene associated with LDL-C and TC levels in the GWAS Catalog, as discussed 
above. Moreover, genetic variation in APOB has been associated with familial 
hypercholesterolemia,38 and levels of APOB are biomarkers of atherogenic particle concentration in 
the bloodstream (Figure 4).39 Since DNAm near the APOB gene causes decreases in LDL-C in 
response to statin treatment, these CpGs can be biomarkers of statin response, and the study of these 
CpGs can increase our understanding of atherogenic disease. 
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Fig. 4. The statin pharmacodynamic pathway and APOB-LDL-C pathway. Purple indicates statin, 
small molecules are in green, and light blue shapes represent protein-coding genes with HGNC 
standard names. Orange ‘Me’ probes represent DNA methylation occurring near the gene coding 
region (created with BioRender.com; adapted from PharmGKB37). 

 
 We propose a potential model of how DNAm near APOB may affect LDL-C levels in response 
to statin therapy (Figure 5). The 8 CpGs we identified near APOB are in the gene regulatory region. 
Five CpGs (cg16306978, cg16723488, cg24309555, cg25071744, cg25123895) are in the APOB 
promoter region, one in an enhancer region (cg05337441), and one (cg00673290) in a CpG island 
within the regulatory region. Generally, DNAm within the regulatory region of a protein-coding gene 
is associated with decreased expression.54 Reduced APOB can lead to an increased ratio of LDL-C 
to APOB.55-56 With statin therapy, LDL receptor expression increases as intracellular hepatic 
cholesterol decreases (Figure 5). Since APOB binds to the LDL receptor, more LDL-C is cleared 
from the plasma per APOB particle, leading to a greater decrease in measured LDL-C (Figure 5). It 
could also be that an individual with reduced APOB levels stores more LDL-C in other cholesterol-
carrying particles. If these particles are equally reduced with statin therapy, then folks with higher 
APOB levels will have higher post-treatment LDL-C levels. Moreover, cholesterol metabolism is an 
intricate pathway, and regulatory mechanisms are still being studied, so additional experiments 
would be required to test these hypotheses. 
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 The statin results also show that the gene RNF39 had 3 nearby CpG sites. RNF39 is involved in 
inflammatory responses throughout the body and has a SNP that has previously been associated with 
free cholesterol levels.40,41 We find 2 CpGs near DYDC1/C2. These genes are primarily studied for 
their role in spermiogenesis, but several SNPs in the gene have been previously associated with 
hypertension.42,43 One CpG was near the TSPAN14 gene, which is associated with Niemann-Pick 
disease, a genetic disorder that leads to the inability to break down fats, such as cholesterol and lipids, 
inside cells.14 Another CpG was near ETS2, which is a transcription factor. It regulates the 
transcription of proteasome assembly chaperone 1 (PSMG1) which has two SNPs associated with 
LDL in the GWAS catalog.7 Finally, the CpG with the largest absolute effect size (|β| = 0.158) was 
located near gene PRXL2A. This gene interacts with ST3 beta-galactoside alpha-2,3-sialyltransferase 
(ST3GLA4) which has 48 SNPs associated with LDL-C and 32 SNPs associated with TC in the 
GWAS catalog.29 These associations provide plausible pathways by which DNA methylation may 
impact response to statin treatment. 

 
 We observed that 5 of the LDL-C CpGs (cg16306978, cg24309555, cg25035485, cg25071744, 
cg25123895) and 3 TC CpGs (cg01528321, cg02750471, cg04043334) identified in the statin 
analysis (8 total, 47%) had previous annotations for inflammatory disease (inflammatory bowel 
syndrome (IBD) and Crohn’s disease) in the EWAS catalog.44 A comprehensive EWAS study has 
published approximately 3,633 CpGs associated with either disease, which make up about 2.1% of 
all CpGs in GoDMC.44 The number of overlapping annotations is significantly (p < 1x 10-8) greater 
than what is expected due to random chance alone. These findings, in combination with the warfarin 

Fig. 5. Lower APOB expression may lead to decreased LDL-C levels after statin 
therapy due to an increased ratio of LDL-C to APOB (created with BioRender.com). 
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CpGs located near HLA genes, suggest that there are shared pathways between immune response and 
response to common cardiovascular and clotting disorder treatments that may be influenced by 
DNAm patterns. This mirrors other recent findings that are beginning to dissect how these two 
systems interact outside of the epigenetic space.45-47 However, since the HLA gene region has high 
genetic diversity, it is possible that the signals detected reflect differences in ancestry and prevalence 
of HLA haplotypes. Thus, we also examined the overlap between the statin DNAm sites, and those 
annotated for inflammatory diseases, excluding the sites in the HLA region (non-HLA sites: 
cg16306978, cg24309555, cg25035485, cg25071744, cg25123895) and found that the overlap 
remained significant (p = 0.052). 
 This study had several limitations. First, we analyze whole-blood DNA methylomes. DNA 
methylation is tissue-specific and much of the pharmacokinetic and pharmacodynamic activity 
occurs in the liver. While some genes have similar DNA methylation patterns across blood and liver, 
this assumption cannot be generalized to all genes48. This means there may be tissue-specific signals 
we are not detecting. However, blood DNA methylation signal is an accessible diagnostic tool and 
DNA methylation sites from blood samples remain biologically relevant signals. Moreover, blood 
DNAm samples have been used to elucidate effects on other phenotypes, such as Alzheimer’s and 
Type 2 Diabetes.49-51 Another limitation is that both the UKBB and GoDMC sample predominantly 
European ancestries, which means there may be signals associated with non-European ancestry that 
are not being detected in this study. Thus, we plan to conduct a replicate analysis using the more 
genetically diverse biobank, All of Us.52 Finally, we measure the warfarin average daily dose over 
the past 5 days, which may be a less robust metric than the patient’s clotting time or time in the 
therapeutic range.57  
 While the longitudinal drug response model presented by Sadler et al. minimizes the risk of 
spurious signals unrelated to drug response,10 it would still be useful to test whether any of the statin 
signals are replicated in a study of cholesterol levels alone. In addition, the signals identified in this 
study are directional from DNA methylation to the outcome of drug response. However, we know 
that some drugs and diseases induce DNA methylation changes. Therefore, it would be interesting 
to conduct an explicit bi-directional MR study to identify reverse-causal effects.53 Moreover, we are 
learning that DNA methylation does not just regulate the nearest genes but has a more complex 
regulatory mechanism that may underlie these results.3,24,31,32 Finally, it is difficult to compare effect 
sizes generated in this analysis with genetic effects identified through GWAS, because of the 
different assumptions and experimental set-ups. However, this work does demonstrate that 
epigenetic considerations are important for advancing our understanding of drug response and ADRs. 
In summary, we address the problem of insufficient and correlative studies linking DNA methylation 
and individual drug response with a statistical inference approach. 
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