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The primary challenge in reporting cancer cases lies in the labor-intensive and time-consuming process of 

manually reviewing numerous reports. Current methods predominantly rely on rule-based approaches or 

custom-supervised learning models, which predict diagnostic codes based on a single pathology report per 

patient. Although these methods show promising evaluation results, their biased outcomes in controlled 

settings may hinder adaption to real-world reporting workflows. In this feasibility study, we focused on lung 

cancer as a test case and developed an agentic retrieval-augmented generation (RAG) system to evaluate the 

potential of publicly available large language models (LLMs) for cancer registry coding. Our findings 

demonstrate that: (1) directly applying publicly available LLMs without fine-tuning is feasible for cancer 

registry coding; and (2) prompt engineering can significantly enhance the capability of pre-trained LLMs in 

cancer registry coding. The off-the-shelf LLM, combined with our proposed system architecture and basic 

prompts, achieved a macro-averaged F-score of 0.637 when evaluated on testing data consisting of patients’ 

medical reports spanning 1.5 years since their first visit. By employing chain of thought (CoT) reasoning and 

our proposed coding item grouping, the system outperformed the baseline by 0.187 in terms of the macro-

averaged F-score. These findings demonstrate the great potential of leveraging LLMs with prompt 

engineering for cancer registry coding. Our system could offer cancer registrars a promising reference tool 

to enhance their daily workflow, improving efficiency and accuracy in cancer case reporting. 

Keywords: Natural Language Processing; Large Language Models; Electronic Health Record; 

Cancer registry; Patient Journey. 

1.  Introduction 

Lung cancer stands as the foremost cause of cancer-related deaths among individuals aged 50 years 

and older, surpassing breast, colorectal, and prostate cancers combined in 2020, as reported by the 

Global Cancer Observatory, an initiative of the International Agency for Research on Cancer (Ferlay 

et al., 2020). In the United States, it is projected that 611,720 people will succumb to cancer of all 

types in 2024, equating to approximately 1,680 deaths per day (Siegel et al., 2024). Similarly, lung 

cancer has persistently held the top position as Taiwan's leading cause of cancer-specific mortality 

over the years. The survival rates for patients with lung cancer remain persistently low, often due to 

late-stage diagnosis that precludes complete surgical resection, thereby reducing long-term survival 

prospects. 

The Taiwan Cancer Registry (TCR), established in 1979 by the Taiwan Society of Cancer 

Registry, aims to comprehensively measure cancer incidence, morbidity, survival, and mortality 

among individuals with cancer in Taiwan (Chiang et al., 2015). However, the current method of 

reporting cancer cases involves labor-intensive and time-consuming manual review of extensive 

reports, including pathology and radiology reports. Dai et al. (2024) conducted a study at a hospital 

in southern Taiwan, finding that it takes approximately 30 minutes to process a single case in the 
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reporting processing. A significant challenge contributing to the time-intensive nature of the process 

is the large volume and diverse nature of reports associated with each patient. Registrars are required 

to review and understand a wide array of medical reports, such as pathology reports, radiology 

reports, and discharge summaries. These reports often cover a span of approximately 1.5 years per 

patient. One proposed solution to address this challenge involves leveraging artificial intelligence 

(AI) techniques to automatically parse and extract information from cancer pathology reports. 

However, these reports are commonly presented in unstructured formats, posing difficulties for 

machine interpretation due to varying writing styles among different hospitals. Current 

methodologies predominantly rely on specialized rule-based systems (Coden et al., 2009), machine 

learning models (Alawad et al., 2020; Dubey et al., 2019; Yoon et al., 2019) or the hybrid of neural 

symbolic system (Dai, Yang, et al., 2021). Most of these presented works (Alawad et al., 2020; 

Dubey et al., 2019; Yoon et al., 2019) evaluated their approaches based solely on a single pathology 

report per patient. This approach may lead to biased results and could struggle to adapt to the real 

reporting process. 

Recently, large language models (LLMs) have emerged as an effective method for extracting 

information from medical reports (Thirunavukarasu et al., 2023). Due to their large number of 

parameters and extensive pre-trained on diverse text corpora, LLMs have demonstrated impressive 

performance across numerous natural language processing (NLP) tasks, including zero-shot and 

few-shot scenarios (Brown et al., 2020; Nori et al., 2023). Although LLMs have achieved 

remarkable success in various applications, they still face significant limitations, particularly in 

domain-specific or knowledge-intensive tasks. These limitations include difficulties with processing 

long context lengths (Wang et al., 2024) and the potential for generating “hallucinations” when 

dealing with queries outside their training data or requiring up-to-date information (Zhang et al., 

2023). On the other hand, retrieval augmented generation (RAG) is an innovative method for 

tailoring LLMs to tasks in specific domains (Lewis et al., 2020). The core idea behind RAG is to 

leverage a vast collection of documents to enhance the capabilities of generative models, thereby 

improving efficiency in handling complex tasks that require integrated knowledge (Zakka et al., 

2024). Unlike traditional LLMs, RAG functions like a search engine by retrieving relevant text data 

from external knowledge bases through semantic similarity calculations in response to queries. By 

referencing external knowledge and segmenting large documents into smaller chunks, RAG 

effectively reduces the problem of generating factually incorrect content and improves the handling 

of long context data (Kandpal et al., 2023).  

In an effort to streamline the data curation process over the various reports of a patient journey 

while upholding high standards of accuracy, we explore the feasibility of employing LLMs 

alongside agentic RAG to autonomously extract cancer registry coding items pertaining to lung 

cancer from various types of clinical reports detailing a patient’s medical journey. This methodology 

mirrors the responsibilities of a cancer registrar in a real setting, involving the analysis of 

unstructured reports to identify pertinent data elements essential for cancer registry purposes and 

their conversion into standardized codes. 

Our contributions can be summarized as follows: 

(1) We develop an agentic RAG system to facilitate the cancer registry coding process in a real 

hospital setting. Specifically, we assess the feasibility of directly applying openly available 
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LLM models without any fine-tuning, utilizing sophisticated crafted prompts through the 

prompt engineering process.  

(2) We empirically show that off-the-shelf LLMs can achieve promising performance on certain

cancer registry coding tasks based on the proposed system architecture and the compiled

prompts. For example, Mistral-7B (Jiang et al., 2023) can achieve a macro-averaged F-score (F)

of 0.637 when evaluated on the test data used in the previous study (Dai et al., 2024).

(3) The LLM, employing strategies such as chain-of-thought (CoT) (Wei et al., 2022) and the

proposed coding item grouping, performs better by a large margin than those without these

features. When evaluated on the test data, the enhanced strategy outperforms the baseline model

without CoT by 0.187 in terms of macro-averaged F-score.

(4) The proposed system can provide a reference text to facilitate the interpretation of the generated

outcomes. We conducted an analysis of the presented errors with a detailed discussion for future

direction. Through the analysis, we believe that by further validating the generated output with

the original reports to reduce the potential hallucinations observed in the presented study, the

system could offer cancer registrars a promising reference tool to enhance their daily workflow.

2. Methods

To facilitate the coding process over the large and diverse reports associated with each cancer patient, 

we propose adapting the agentic RAG system. This system incorporates openly available LLM 

models along with sophisticatedly designed prompts through the prompt engineering process. In this 

section, we will first outline the dataset used and the target coding items. Then, we will provide an 

extensive overview of the proposed agentic RAG system. Subsequently, we will detail the design 

process and methods for our prompts. Finally, we will describe the evaluation metrics employed to 

assess the performance of our proposed system. 

2.1.  Datasets 

In collaboration with a hospital in southern Taiwan, we collected cancer registry records of lung 

cancer patients linked with corresponding medical reports in our previous work (Dai et al., 2024). 

In the compiled dataset, we removed records unrelated to lung cancer based on primary site 

information, along with patients who had fewer than two reports or only one type of report. This 

resulted in a final dataset comprising 30 coding item records for 1,629 patients. The dataset was 

further divided into training and testing sets, comprising 1,287 and 342 patients, respectively. Each 

patient is associated with an average of 14.6 medical records. Despite Mandarin Chinese being 

Taiwan's official language, all medical reports were documented mainly in English or a mixture of 

Chinese and English. The dataset was used for the evaluation of the proposed agentic RAG system 

for automatic cancer registry coding. For this pilot study, we selected eight coding items to develop 

our LLM-based cancer registry coding assistant system. These items include pathological TNM 

classifications (TNM), histology types (H), behavior types (B), primary site (PS), laterality (L), and 

grades (G). 
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2.2.  Proposed Agentic RAG System 

We applied RAG to process free-text medical reports collected over approximately 1.5 years to 

generate recommended cancer registry coding outcomes. Our system employs advanced embedding 

models to index and retrieve text chunks related to the specific coding prompt from medical reports 

using retrievers. These chunks are then filtered with post-processors to enhance accuracy before 

generating standardized cancer registry codes with an LLM. The system functions in two main 

stages: Top-k embedding-based retrieval and LLM-based code generation. 

In the first stage, the same embedding model used for indexing the chunks of medical records is 

used to embed the given prompts for retrieving the most pertinent text chunks from medical reports 

for each patient. These chunks are refined using keyword-based post-processors to ensure they are 

among the top three most relevant for the coding task. In the second stage, the refined text chunks 

are combined with the prompt and query. The LLM then processes this integrated information, 

learning from patterns in provided examples, analyzing the input, and generating accurate and 

standardized cancer registry codes. 

Figure 1 illustrates the system workflow of the proposed agentic RAG method. The detail 

workflow operates as follows: Initially, various medical reports for each patient are collected and 

formatted into JSON lines. These documents are then segmented into smaller, manageable text 

chunks. Each chunk undergoes processing through an embedding model, transforming it into a 

vector representation. When a query prompt for a coding task is received, it is similarly converted 

into a vector representation to facilitate a search within the vector database. This search identifies 

the most relevant text chunks, which are then combined with the query prompt to create a refined 

request. This refined request is sent to the LLM for processing, which subsequently provides a 

comprehensive response. For the underlying LLMs employed by the agents of the proposed RAG 

 
Fig. 1.   Workflow of the proposed agentic RAG system. 
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system, we experimented with Mistral-7B and LLaMA3-8B (Touvron et al., 2023). Both Mistral 

and LlaMA3 are renowned for their balance between computational efficiency and performance 

across diverse NLP tasks. Therefore, for our implementation of the proposed RAG system, we 

selected Mistral-7B as the base model and compared its performance with LlaMA3-8B. 

2.3.  Prompt Engineering for Cancer Registry Coding 

A prompt is a text-based and task-specific instruction given to a language model to guide its output 

without altering its parameters. The language model processes the prompt and generates a response 

based on the provided instructions and context (Marvin et al., 2023). Typically, a prompt may 

include instructions, input data, context, and an output indicator. According to the information 

provided, prompts can be categorized into four levels (Heston & Khun, 2023). Level four, known 

as CoT, breaks down the instruction into step-by-step solutions, offering language models a more 

structured way to handle the prompt for improved accuracy. Prompt engineering has emerged as a 

crucial technique for crafting effective prompts. It is an iterative process aimed at refining defined 

prompts to enhance the capabilities of pre-trained LLMs. In this subsection, we describe the crafted 

level four prompts through an iterative prompt engineering process. 

First, we set the goal to design the initial prompts for the eight coding tasks. We precisely 

specified the definitions of the coding task along with the desired output formats. In our initial 

implementation, we used the long-form coding manual of TCR (revision of the 2018v.6) to include 

detailed explanations and coding guidelines for each coding item. The first and second rows of Table 

1 show examples of the PS coding item. 

Furthermore, to achieve a more automated and controllable process, we designed output format 

prompts to instruct the LLM on how to format its output. As shown in the third row of Table 1, we 

specified that the LLM should generate its response in JSON format to facilitate the extraction of 

the conclusions. The output JSON object contains three keys: “explain”, “cite”, and the names of 

the target coding items. The target coding item name key holds the final coding result suggested by 

the LLM. If the LLM cannot determine the result based on the given report, the values for this key 

is instructed to assign “NA”. The “explain” key holds the explanation provided by the LLM for the 

reason why the coding results are suggested. The “cite” key includes the relevant paragraphs from 

the documents referenced by the LLM to support the coding results. We developed a simple parser 

based on regular expressions to convert the decoded text response from an LLM into a JSON 

structured format. If the response for a report cannot be parsed, “NA” is assigned for that report. 

During the refining phase, we evaluated the performance of each prompt on the coding tasks 

using the training set. Biomedical expert MS Huang (listed as the second author) carefully analyzed 

the models’ responses to identify any errors or areas where the response fell short. Based on the 

error analysis and the potential solutions observed, we adjusted the prompt content to get a more 

precise response. This process was repeated until satisfactory performance was achieved. We then 

evaluate the developed prompts on the test set for performance comparison. 

During the iterative process, we observed that certain coding items are often considered together 

in the actual cancer registration process. Therefore, we treated these related items as a coding item 

set and integrated their instructions into a single prompt during the design phase. For example, PS 

and L are often addressed together. This integration helps streamline the process and ensures that 
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related items are coded consistently and accurately. Table 2 shows the pre-defined coding item set. 

The grouped coding items are instructed within the same prompt. 

Another significant improvement during the iterative process to the above basic prompt was the 

introduction of CoT reasoning for coding items like TNM and G. This method involves 

decomposing the coding task into intermediate steps and solving each step before arriving at the 

final answer (Wei et al., 2022). For example, consider the coding item G. Initially, we provided 

detailed coding rules in the prompt, such as: 

 

Table 1.  Example of the level 3 structured prompt defined for the “primary site” coding 

item. The ellipsis indicates the placeholder for the prompt string for other coding items 

belonging to the same group. 

Prompt Component Example 

Coding item set definition 

Your task as an assistant is to identify and confirm the primary site […] 

of lung cancer.  

The primary site refers to specific regions within the respiratory 

system. 

[…] 

 

Coding rules for an individual item 

It is essential to use only the information provided in the document at 

hand, considering its date and the pertinent organs or tissues examined. 

Choose from the following standard codes: 

- Primary site codes: C339: Trachea, C340: Main bronchus, C341: 

Upper lobe, lung, … 

[…] 

 

Output format (including examples) 

Your response must be a valid JSON object containing the following 

keys: 

-'primary site': A string containing the code for the primary site. 

[…] 

Ensure your response is limited to the provided options for primary site 

[…].  

For instance, if the pathologic diagnosis specifies ‘Lung; upper lobe; 

left’, this indicates that the primary site […] are located in the ‘upper 

lobe’ of the ‘left’ lung, according to the provided options your JSON 

response should be: 

{ 

"explain": "[Insert your explanation here based on the document]", 

"cite": "[Insert the relevant passages extracted from the document 

used for your decision]", 

“primary site”: “C341”, 

[…] 

} 
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…Exclude any data from metastatic sites or recurrent tumors. If an excisional biopsy was 

conducted at the primary site and subsequent tumor resection shows no residual tumor, use 

the pathological grade/differentiation from the excisional biopsy. For patients who 

underwent neoadjuvant treatment before surgery, record the grade/differentiation based on 

post-surgical tumor tissue pathology. … 

We revised these rules by breaking down the coding task of G into three steps resulting a level four 

prompt:  

1. Identify relevant reports: First, we requested the LLM to identify pathology reports that include

surgical procedures from all available medical reports using a list of predefined common surgical

terms.

2. Define reference range: Next, we instructed the model to produce the coding result for G based

solely on the pathology reports identified in the first step. Coding definition rules similar to the

initial detailed definitions shown above were also applied in this step.

3. Point out other key points: Finally, we instruct the model to improve its accuracy by considering

the dates of the reports and the specific organs or tissues examined, followed by applying the

exact “coding rules” for G.

2.4.  Evaluation Metrics 

We evaluate the performance of the proposed agentic RAG system using the commonly used metrics 

for evaluating information extraction results: precision (P), recall (R), and F1-measure (F). P and R 

are also known as positive predictive value and sensitivity, respectively. The F-score is the weighted 

harmonic mean of P and R. The formulae for the three metrics are defined as follows: 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁

𝐹 =
2×𝑃×𝑅

𝑃+𝑅

In these formulas, TP, FP, and FN represent the number of true positives, false positives, and false 
negatives, respectively, for each coding item. Specifically, if the model outputs “NA” for a coding 
item for a patient’s entire report set, it is counted as one FN for that patient.  

Table 2.  The pre-defined related item groups. 

Coding item group type Coding item 

Grouped 

- Pathological TNM classification (TNM)

- Primary site and Laterality (PS and L)

- Histology and Behavior (H and B)

Isolated Pathological grades (G)
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3.  Results 

3.1.  Performance Comparison of the Proposed Agentic RAG System 

To illustrate the effectiveness of the proposed system, we compared it with the previously developed 

neural symbolic hybrid system (Dai et al., 2024). and two baseline models, as shown in Table 3. For 

the hierarchical attention network (HAN) model (Gao et al., 2018), we followed the binary relevance 

transformation method (Dai, Su, et al., 2021) to formulate the coding task for each coding item as a 

multiclass classification task, training the corresponding number of HAN-based classifiers. For the 

multi-task convolutional neural network (MT-CNN) model (Alawad et al., 2020), BioWordVec 

(Zhang et al., 2019) was used to represent tokens, and a single model was trained to generate all 

eight cancer registry items.  

For the proposed RAG systems, LLaMA3-8B clearly outperformed Mistral-7B in almost all 

coding items under the same configuration and prompt design. LLaMA3-8B also outperformed MT-

CNN and HAN in five and six coding items, respectively. Notably, LLaMA3-8B also performed 

comparably to the neural symbolic system developed in our previous work, achieving the best F-

scores in coding items such as PS and L. These promising results demonstrate the feasibility of using 

LLM models without any fine-tuning for cancer registry coding tasks in the real hospital setting. 

3.2.  Ablation Study Results on Different Prompt Engineering Techniques 

To further evaluate the effectiveness of the exectuted prompt engineering process for downstream 

task performance. We execute our ablation study on four cases: (1) full prompt: the complete prompt 

with all components shown in Tables 1 and 2 and CoT; (2) a level 3-G prompt: a prompt without 

CoT; (3) a level 3-I prompt: a prompt without CoT and all coding item groups shown in Table 2 are 

isolated; and (4) a level 2 prompt: a level 3-I prompt without adding the context. In our 

implementation, the context refers to the part of “Coding rules for an individual item”. The results 

are shown in Table 4. 

The results from the level three prompt demonstrate the potential of LLMs in performing cancer 

registry coding tasks from medical reports. This finding is particularly inspiring as it highlights the 

broader potential of leveraging off-the-shelf LLMs for processing medical text without sophisticated 

Table 3.   Performance comparison of the proposed systems across eight coding 

items. The highest F-scores for each type are highlighted in bold. 

 Mistral-7B LLaMA3-8B Neural-symbolic MT-CNN HAN 

Coding Item P R F P R F F F F 

T 0.707 0.915 0.798 0.844 0.972 0.904 0.905 0.730 0.763 

N 0.845 0.955 0.897 0.860 0.976 0.914 0.928 0.830 0.904 

M 0.433 0.898 0.584 0.400 0.917 0.557 0.930 0.799 0.822 

PS 0.877 0.914 0.895 0.894 0.987 0.938 0.884 0.750 0.710 

L 0.911 0.917 0.914 0.926 0.987 0.956 0.948 0.910 0.951 

H 0.724 0.710 0.717 0.721 0.964 0.825 0.871 0.700 0.760 

B 0.942 0.855 0.897 1.000 0.977 0.988 0.934 0.994 0.994 

G 0.815 0.975 0.888 0.883 0.970 0.925 0.932 0.797 0.939 
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prompt engineering. Specifically, we observed that the performance for the coding items L, B, and 

PS is satisfactory, with F-scores over 0.85. However, the performance of the proposed RAG system 

with grouped prompts on the TN and G coding items is less satisfactory, with F-scores lower than 

0.6. Additionally, using isolated prompts alone, the proposed system struggles with additional 

coding items including TNM and G, showing even lower F-scores (F-score <0.6). By comparing 

the results of the level three prompt with the full prompt, we found that the inclusion of CoT 

reasoning significantly boosts the macro-averaged F-score from 0.637 to 0.824. This highlights the 

effectiveness of the employed prompt engineering process. Additionally, the level two prompt failed 

to extract any coding items, demonstrating the lack of practical cancer registry coding knowledge 

in the current off-the-shelf LLMs. 

4. Discussion

4.1.  Error Analysis 

Benefiting from the development of pre-trained LLMs, the proposed RAG system can rapidly 

support most of the cancer registry coding item extraction tasks without further fine-tuning steps. 

However, from our results, we also observe that the system may occasionally produce conclusions 

contrary to the facts, even when clear clues are present in the reference texts. These “hallucinations” 

indicate that the system’s performance has room for improvement. In this section, we outline 

common error profiles derived from the overall design and present corresponding examples along 

with potential solutions for future work. 

Reference Data Flaws: A single patient may have several to dozens of reports at different times 

and for different examination items during their treatment period. Using all reports can avoid 

missing critical information but also introduces computational burdens and noise that may interfere 

with the decision of the coding results. Therefore, in the retrieval phase for evidential chunks, we 

only retrieve the top three chunks to narrow the inference space. However, this approach has a 

double-edged sword effect, which may lead to inappropriate reference chunk citations. Such errors 

arise when the provided chunks do not offer clear and appropriate clues, leading the model to either 

refrain from responding or generate hallucinations not mentioned in the original text. Based on our 

analysis of the presented system errors, it is evident that the current implementation sometimes 

suffers from the dilemma of similar information retrieved from the top-3 reference data. To address 

this issue, a post-retrieval process mechanism could be introduced to enhance the diversity among 

candidate chunks. Balancing data coverage would be helpful for this shortcoming. 

Table 4.  The ablation study results on different prompt engineering techniques 

Technique Macro-P Macro-R Macro-F 

Full prompt (level 4) 0.782 0.892 0.824 

w/o CoT (level 3-G) 0.595 0.733 0.637 

w/o CoT & Group (level 3-I) 0.571 0.699 0.609 

w/o Coding Rules (level 2) 0.000 0.000 0.000 
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Inconsistency with Facts: There are instances where the model produces outputs deviating from 

the retrieved facts, even when the medical reports already provide a clear basis for concluding the 

coding results. Despite the defined prompts guiding and restricting the model’s behavior, situations 

that exceed these controls still occur. This type of hallucination, where the model lacks fidelity to 

the source facts, has also been noted in recent research on LLMs (Tonmoy et al., 2024). Both the 

initial one-shot prompting and the current self-consistency CoT (Wang et al.) approaches may not 

be robust enough to assist the model in recalibrating its responses. Future work could explore 

techniques like Re-Reading (RE2), which enhances understanding by processing questions twice to 

better focus on the input (Xu et al., 2024), and Self-Reflective Retrieval-Augmented Generation 

(Self-RAG), which improves both quality and factual accuracy through retrieval and self-reflection 

(Asai et al., 2023). These methods could help the model produce more consistently and 

progressively refined outputs. 

Knowledge Boundary Limitations: In the process of diagnosing cancer, different examination 

methods may yield varying results. Summarizing multiple possibilities and ultimately providing a 

final answer is challenging for both professionals and support systems. For instance, when 

identifying cancer histology, conclusions derived from surgical pathology are generally more 

reliable than those obtained from specimens, gross examinations, or microscopic examinations. We 

noticed that the current applied LLMs are limited by inherent knowledge gaps and may lack the 

capability to accurately assess the strength of evidence across reports, leading to a higher likelihood 

of errors. 

4.2.  Prompting Engineering for Cancer Registry Coding 

The extraction of target information from clinical texts using LLMs heavily depends on effective 

prompt design. Due to the multifunctional capabilities of pre-trained models, prompts can be crafted 

in various ways. This flexibility is particularly useful when considering the professional nature of 

the input texts and the need for post-processing the output data. 

In this study, the aim was to extract specific cancer registry codes from medical reports. The 

prompt design included a detailed instruction section, coding definitions, and examples, with the 

output required in a specific JSON format. This comprehensive approach, although necessary for 

accuracy, resulted in longer prompts. Different studies adopt varying prompt strategies. For instance, 

Hyeon Seok's work (Choi et al., 2023), which involved extracting cancer features from breast 

ultrasound and surgery reports, utilized simpler prompts without strict format requirements, as the 

outputs underwent manual validation. This streamlined approach achieved an accuracy of 87.7%. 

On the other hand, Huang et al. (2024) study, similar to ours, used detailed prompts for extracting 

data from public cancer data repositories, requiring output in a JSON format. Their structured 

prompt design, supported by thorough data preprocessing, achieved an F1-score of 88%. 

These examples demonstrate that while detailed prompts can enhance accuracy, they must be 

balanced with the need for efficiency and simplicity. A well-designed prompt, aligned with clean 

data sources and logical objectives, can significantly improve system performance, showcasing the 

importance of thoughtful prompt construction in utilizing LLMs effectively. 
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5.   Conclusion 

Cancer registry tasks involve referencing numerous clinical imaging and diagnostic reports to 

abstract patient information according to the AJCC-defined codes. These tasks are typically 

performed by certified clinical personnel with specialized cancer knowledge. The development of 

cancer registry support systems has the potential to reduce clinical workload and improve healthcare 

quality. Unlike traditional machine learning models, LLMs can utilize knowledge-guided prompts 

to predict field codes, making them valuable tools for supporting clinical tasks. In this study, we 

utilized the Mistral-7B and LLaMA3-8B pre-trained models and designed prompts for eight cancer 

registry items, including PS, L, H, B, G, and TNM. We observed that providing context and coding 

rules in a single prompt led to weaker performance due to insufficient reference report extraction. 

Incorporating CoT prompts, which provide step-by-step guidance toward the final coding output, 

significantly improved system performance. Additionally, we found that without specific cancer 

registry rules, the model's outputs became inconsistent and unreliable.  

Overall, our findings indicate that LLMs can achieve promising results in lung cancer registry 

coding tasks even without the need for fine-tuning. Specifically, LLMs demonstrate impressive 

performance and efficiently utilize auxiliary data for task completion without specific training 

examples. This underscores their potential as invaluable tools for automating and optimizing cancer 

data management processes. 

Appendix A. Prompt for Grouped Primary Site and Laterality in the Proposed RAG 

System 

Your task as an assistant is to identify and confirm the primary site and laterality of lung cancer. The primary site 

refers to specific regions within the respiratory system. The laterality refers to whether the cancer originates from a 

paired organ and is applicable only to primary tumors. It is essential to use only the information provided in the 

document at hand, considering its date and the pertinent organs or tissues examined. Choose from the following 

standard codes for lung cancer sites and laterality: 

 

Primary site codes: 

- C339: Trachea 

- C340: Main bronchus 

- C341: Upper lobe, lung 

- C342: Middle lobe, lung 

- C343: Lower lobe, lung 

- C348: Overlapping lesion of lung 

- C349: Lung NOS (Not Otherwise Specified) 

 

Laterality codes: 

- 1: Primary origin of the cancer is on the right side. 

- 2: Primary origin of the cancer is on the left side. 

- 3: Unilateral involvement only, but origin unclear whether from left or right side. 

- 4: Bilateral involvement with unclear side of origin, and medical records describe a single primary. 

 

Your response must be a valid JSON object containing the following keys: 

-'primary site': A string containing the code for the primary site. 

-'laterality': A string containing the code for laterality. 
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Ensure your response is limited to the provided options for primary site and laterality. For instance, if the tissue in 

the report is labeled as 'Lung; NOS' and the pathologic diagnosis specifies 'Lung; upper lobe; left', this indicates that 

the primary site and laterality are located in the 'upper lobe' of the 'left' lung, according to the provided options your 

JSON response should be: 

{ 

"explain": "[Insert your explanation here based on the document]", 

"cite": "[Insert the relevant passages extracted from the document used for your decision]", 

"primary site": "C341", 

"laterality": "2" 

} 

Appendix B. Implementation Details for the Proposed RAG System 

For the proposed RAG system, we utilize the LlamaIndex (Liu, 2022) framework. The developed 

system is deployed on a machine equipped with PyTorch libraries and CUDO12.0 along with an 

Intel i7-13700 processor, 64GB of RAM, and an NVIDIA GeForce RTX 4090 24GB VRAM (video 

RAM) graphics card. We employ M3-Embedding (Chen et al., 2024) as our embedding model for 

encoding a patient’s every medical report during the indexing stage. For the retrieval module, we 

set the number of top K candidate chunks to three. In our configuration settings, we set the 

temperature to 0 and the seed to 42. 

It is worth noting that loading models for inference demands a substantial amount of GPU memory. 

A general rule of thumb is that every billion parameters require 3 GB of graphics double data rate 

(GDDR) 6 VRAM for the default precision of parameter values (Lin et al., 2024). Due to the 

limitations of our machine hardware specifications, we quantize the employed LLMs to fixed-point 

4 (FP4) for inference, which recasts these model weights into lower precision data types. This 

method slightly reduces performance but significantly lowers the memory requirement to a quarter 

of the original. 

Appendix C. Definition of 30 Lung Cancer Coding Items in the Dataset for This Study 

Coding Type Description 

AJCC Edition The version and chapters of the AJCC (American Joint Committee on Cancer) 

cancer staging manual used to determine the cancer stage of the case. 

Behavior Code The morphological code (M-code) in the pathological diagnosis. The 5th code in 

the M-code is the behavior code. The first four digits of M-code indicate the 

specific histological term. The fifth digit is the behavior code, which indicates 

whether a tumor is malignant, benign, in situ, or uncertain. 

Clinical Other Staging Group The classification standards of the selected “Other Staging Systems” (defined 

below) chosen for staging cancer cases. 

Clinical Stage Descriptor The prefix or suffix used in conjunction with clinical TNM fields. The prefix/suffix 

denotes special circumstances that may affect the staging and analysis of the data 

and is based on the clinical T, N, and M categories prior to treatment. 
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Date of First Microscopic 

Confirmation 

The earliest date when the case's cancer was confirmed by microscopy. 

Date of First Surgical 

Procedure 

The earliest date of surgery for cancer performed at any medical institution. 

Date of Initial Diagnosis The earliest date the cancer was diagnosed by a physician. 

Date of Surgical Diagnostic 

and Staging Procedure 

The date of the surgical treatment performed for diagnosis or staging at any medical 

institution. 

Diagnostic Confirmation The most accurate basis of diagnosis at the reporting hospital or an external hospital 

for the case. 

Grade Clinical The grading/differentiation of the solid tumor before the first treatment. 

Grading/differentiation refers to the degree of similarity between the tumor and 

normal tissues. Well differentiated (Grade I) is most similar to normal tissue; 

undifferentiated (Grade IV) is most dissimilar from normal tissue. 

Grade Pathological The grading/differentiation of the solid tumor after surgery at the primary site. 

Grading/differentiation refers to the degree of similarity between the tumor and 

normal tissues. Well differentiated (Grade I) is most similar to normal tissue; 

undifferentiated (Grade IV) is most dissimilar from normal tissue. 

Histology The structure of the primary tumor cells under the microscope. 

Laterality The specification of whether the cancer originates from one side of a pair of organs 

or the body. It is a only applicable to the primary tumor site. 

Lymph vessels or Vascular 

Invasion 

The code is recorded based on the pathological report of the primary site to indicate 

the presence or absence of invasion into lymph vessels or blood vessels. 

Nodes Examined The total number of regional lymph nodes examined by a pathologist. 

Nodes Positive The total number of positive regional lymph nodes examined by a pathologist. 

Other Staging System The selection of alternative staging criteria if the AJCC Cancer Staging System is 

not utilized. 

Pathologic M The presence of distant metastases of the primary tumor. 

Pathologic N The regional lymph nodes involvement of the tumor. The item is encoded based on 

all clinical evaluations done prior to definitive surgery, plus all information through 

completion of definitive surgeries in the first course of treatment in the absence of 

disease progression or within 4 months of diagnosis, whichever is longer. 

Pacific Symposium on Biocomputing 2025

134



 

 

 

Pathologic Stage Descriptor The prefix or suffix used in conjunction with pathologic TNM fields. The 

prefix/suffix denotes special circumstances that may affect the staging and analysis 

of the data and is based on the pathologic T, N, and M categories after completion 

of surgical treatment. 

Pathologic T The size of the primary tumor and its invasion into adjacent tissues. The item is 

encoded based on all clinical evaluations done prior to definitive surgery, plus all 

information through completion of definitive surgeries in the first course of 

treatment in the absence of disease progression or within 4 months of diagnosis, 

whichever is longer. 

Perineural Invasion The presence of neural invasion as noted in the pathological report of the primary 

site in the medical records. 

Primary Site The primary site of the cancer. 

Scope of Regional 

Lymph Node 

Surgery 

The extent of regional lymph nodes removed, sectioned, or aspirated during the 

primary site surgery or another separate surgery at the reporting hospital. 

SSF 2 

SSF 5 

SSF 6 

SSF 7 

Cancer site-specific factors (SSF) related to prognosis and treatment decisions. 

SSF2: Visceral pleural Invasion (VPI)/elastic layer value set. 

SSF5: Sampling or dissection of mediastinal lymph nodes (N2 Nodes) value set. 

SSF6: EGFR (epidermal growth factor receptor) gene mutation value set. 

SSF7: ALK (Anaplastic lymphoma kinase) gene translocation value set. 

Surgical Margins The final status of the surgical margins after the primary tumor is removed. 

Surgical Margins Date The closest distance of tumor cells to the surgical margins in the pathological report 

after the primary tumor is removed. 
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