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Uterine leiomyomata, or fibroids, are common gynecological tumors causing pelvic and menstrual 

symptoms that can negatively affect quality of life and child-bearing desires. As fibroids grow, 

symptoms can intensify and lead to invasive treatments that are less likely to preserve fertility. 

Identifying individuals at highest risk for fibroids can aid in access to earlier diagnoses. Polygenic risk 

scores (PRS) quantify genetic risk to identify those at highest risk for disease. Utilizing the PRS software 

PRS-CSx and publicly available genome-wide association study (GWAS) summary statistics from 

FinnGen and Biobank Japan, we constructed a multi-ancestry (META) PRS for fibroids. We validated 

the META PRS in two cross-ancestry cohorts. In the cross-ancestry Electronic Medical Record and 

Genomics (eMERGE) Network cohort, the META PRS was significantly associated with fibroid status 

and exhibited 1.11 greater odds for fibroids per standard deviation increase in PRS (95% confidence 

interval [CI]: 1.05 – 1.17, p = 5.21x10-5). The META PRS was validated in two BioVU cohorts: one 

using ICD9/ICD10 codes and one requiring imaging confirmation of fibroid status. In the ICD cohort, a 

standard deviation increase in the META PRS increased the odds of fibroids by 1.23 (95% CI: 1.15 – 

1.32, p = 9.68x10-9), while in the imaging cohort, the odds increased by 1.26 (95% CI: 1.18 – 1.35, p = 

2.40x10-11). We subsequently constructed single ancestry PRS for FinnGen (European ancestry [EUR]) 

and Biobank Japan (East Asian ancestry [EAS]) using PRS-CS and discovered a nominally significant 

association in the eMERGE cohort within fibroids and EAS PRS but not EUR PRS (95% CI: 1.09 – 

1.20, p = 1.64x10-7). These findings highlight the strong predictive power of multi-ancestry PRS over 

single ancestry PRS. This study underscores the necessity of diverse population inclusion in genetic 

research to ensure precision medicine benefits all individuals equitably. 
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1. Introduction

Uterine fibroids, or uterine leiomyomata, are benign tumors of the uterine smooth muscle that affect a 

substantial proportion of people with uteruses. While nearly all of these individuals will develop at least 

one fibroid in their lifetime, only about 50% will experience symptoms, leading to a condition with 

considerable variability in presentation.1,2 Fibroids are recognized as a health disparity, with a higher 

prevalence reported among individuals identifying as Black compared to those identifying as White.1,3 

Additionally, fibroids impose a significant financial burden to the healthcare system, being the leading 

cause of hysterectomy and gynecological hospitalizations in the United States.4 

Despite their common occurrence, the genetic factors contributing to fibroid development remain 

complex and multifactorial. Genome-wide association studies (GWAS) have enhanced our 

understanding of the genetic underpinnings of uterine fibroids, revealing that the condition is influenced 

by multiple genetic variants, each contributing a small amount to the overall risk.5,6 This polygenic 

nature of fibroids means that identifying individual genes of interest through single-gene studies is 

insufficient. To better estimate genetic risk for polygenic diseases like fibroids, polygenic risk scores 

(PRS) have been developed. A PRS aggregates an individual’s genetic risk across various loci, 

providing an overall estimate of their risk for the disease or other clinically relevant outcome.7 In the 

context of uterine fibroids, PRS can refine diagnostic accuracy, help identify individuals at high genetic 

risk for fibroids, and predict the likelihood of treatment resistance or recurrence.8 This personalized 

approach allows for more targeted interventions and pre-clinical monitoring, potentially leading to 

earlier and more effective management.  

PRS development has traditionally relied on GWAS data from populations of European ancestry, 

which limits the applicability of these scores to populations of other ancestries.9 The use of single 

ancestry GWAS also exacerbates issues with generalizability. There are several programs for PRS 

construction, and a review of the different programs and methodologies has been published elsewhere.10 

However, PRS-CSx is an approach which uses linkage disequilibrium (LD) reference panels matched 

to the ancestry of the GWAS population to perform continuous shrinkage across summary statistics.11 

This approach integrates multiple multi-ancestry GWAS summary statistics from different ancestry 

groups allowing for more genetic variability to be captured in the score. In 2022, our group published 

a PRS for fibroids using a European ancestry GWAS and validated it in a population of European 

ancestry.12 Here, we aim to extend previous work by developing a multi-ancestry PRS for fibroids 

applicable to a diverse cohort. By using this method to construct a portable PRS, we hope to address 

and mitigate racial disparities in precision medicine by overcoming existing limitations in capturing 

polygenic traits. 

2. Materials and Methods

2.1.   Study populations 

The Electronic Medical Records and Genomics (eMERGE) Network (2007 – present) is a national 

network of DNA repositories that are linked to electronic health records (EHRs). A detailed description 

of the organization of the eMERGE Network has been previously published.13 Data contained in the 

EHR include International Classification of Disease (ICD) diagnostic and procedure codes, basic 
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demographics, discharge summaries, progress notes, health history, laboratory values, imaging reports, 

medication orders, and pathology details. Participants in the eMERGE network were genotyped 

separately, then imputed and merged. A detailed description of the genotyping, imputation, and quality 

control of the eMERGE phase III array dataset has been previously reported.14  

The BioVU DNA Repository is a deidentified database of EHRs that are linked to patient DNA 

samples at Vanderbilt University Medical Center (VUMC). A detailed description about the database 

and its maintenance has been published elsewhere.15 The EHR for BioVU contains the same 

information as stated above for eMERGE. This study also obtained Institutional Review Board (IRB) 

approval and was conducted in accordance with ethical standards. 

While BioVU is a member of eMERGE, samples included in this study are unique to BioVU. 

BioVU participants were genotyped on a custom MEGA array with genotypes aligned to the forward 

strand. Initial quality control of both study populations excluded samples or variant sites with 

missingness above a 2% threshold. Samples were also excluded if consent had been withdrawn, if the 

sample was duplicated, if there was a failure in sex concordance, or if there was a discrepancy between 

reported race and genetically determined race. Genetic males were censored from analysis. Imputation 

was performed on the Michigan Imputation Server using Minimac4 and the 1000 Genomes Phase 3 

combined reference panel.16,17 

Phecodes within the EHR were based from ICD9 and ICD10 codes. Fibroid status in eMERGE was 

extracted based on phecodes recorded in EHR data.18 Two cohorts were created in BioVU using 

different case and control definitions: BioVU-ICD and BioVU-imaged. The BioVU-ICD cohort 

classified fibroid status similarly to eMERGE, derived from phecodes, while the BioVU-imaged cohort 

used a previously published algorithm to identify cases or controls based on imaging records indicating 

the presence or absence of fibroids.19 In the eMERGE and BioVU-ICD cohorts, cases had at least one 

code for fibroid diagnosis or a history of fibroid treatment, while controls had no such records. In the 

BioVU-imaged cohort, cases were identified by a history of fibroids or treatment procedures and at 

least one imaging procedure confirming fibroid presence. Controls in the BioVU-imaged cohort 

required two or more imaging events on separate dates without fibroid findings and no history of 

diagnosis or treatment. Race and ethnicity were determined via reporting through categorical options. 

The multi-ancestry group was comprised of all individuals that reported as White, Black, or Asian race 

and Hispanic or non-Hispanic ethnicity. The other two groups were based on either White or Black 

reported race and Hispanic or non-Hispanic ethnicity. The counts of each strata are given in Table 1. 

2.2.   Polygenic risk score development 

Genetic effect weights for PRS construction were derived from uterine fibroid GWAS summary 

statistics from FinnGen r8 and BioBank Japan.20,21 Both biobanks determined case and control status 

based on the presence or absence of ICD9/ICD10 codes or equivalent codes in their healthcare systems. 

For the multi-ancestry (META) PRS, posterior genetic effect weights were calculated using PRS-CSx, 

while weights for the single-ancestry scores, European (EUR) and East Asian (EAS) PRS, were 

calculated using PRS-CS.11,22 We used linkage disequilibrium (LD) reference panels from the 1000 

Genomes Project, with the EUR panel for the FinnGen cohort and the EAS panel for the BioBank Japan 

cohort. Both PRS-CS and PRS-CSx use a high-dimensional Bayesian framework that calculates a 

continuous shrinkage prior tailored to a target population, based on the selected LD reference panel. 
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This shrinkage prior is applied to the raw genetic weights from the source GWAS to derive posterior 

genetic effect weights, which are then summed to create the PRS. PRS-CS is designed for a single 

GWAS from a single population, whereas PRS-CSx integrates results from multiple GWAS summary 

statistics. The programs were applied to three target populations: eMERGE, BioVU-ICD, and BioVU-

imaged. Posterior effect weights calculated for each population were summed to create a PRS using 

PLINK 2.0.23,24 

2.3.   Statistical analysis 

All statistical analyses were performed using R Statistical Software (v4.2.2).25 Samples remaining after 

exclusion in eMERGE and BioVU were used for ten-fold cross validation. Analysis of variance 

(ANOVA) test was used to determine if age and BMI differed within racial groups between all cohorts. 

These covariates were chosen because prior literature has revealed associations between uterine fibroid 

risk with both age and BMI.1 Student’s T-test was used to determine if mean META, EUR, and EAS 

PRS significantly differed between cases and controls for each racial group within the cohorts. Densities 

of each PRS stratified on case/control status, were visualized using ‘ggplot2.’26

2.4.   Ten-fold cross validation 

Ten-fold cross validation was performed using the R package ‘caret.’27 Each PRS (META, EUR, EAS) 

was tested for validation in each of the racial groups for every cohort, resulting in nine different 

Cohort 

Reported Race N BMI (SD) Age (SD) Controls (%) Cases (%) 

eMERGE 

All 23,183 29.07 (7.49) 65.30 (18.69) 21,212 (91) 2,290 (9) 

White 20,408 28.68 (7.19) 66.52 (18.52) 18,398 (91) 1,784 (9) 

Black 2,775 32.44 (8.66) 56.94 (18.73) 2,306 (84) 439 (16) 

BioVU - ICD 

All 33,391 29.27 (7.84) 52.53 (18.61) 32,764 (97) 1,076 (3) 

White 27,141 28.69 (7.53) 54.64 (18.20) 25,812 (98) 596 (2) 

Black 6,250 32.03 (8.72) 45.19 (18.19) 5,700 (93) 420 (7) 

BioVU - imaged 

All 9,182 29.21 (8.08) 44.86 (17.33) 7,910 (84) 1,463 (16) 

White 7,294 28.55 (7.69) 46.96 (17.45) 6,082 (86) 975 (14) 

Black 1,888 31.90 (9.17) 38.02 (15.41) 1,464 (78) 410 (22) 

Table 1. Racial breakdown of cohorts and population characteristics. Listed below are total counts, mean and standard 

deviation (SD) of body mass index (BMI) and age, and numbers of cases and controls for each of the three groupings within 

all cohorts. Race consists of White reported race and non-Hispanic ethnicity (White), Black reported race and non-Hispanic 

ethnicity (Black), and all the above (All). 
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validation groups in total. Each of the nine groups was split into 80/20 training and testing sets. For 

each PRS, three models were applied to each of the nine validation groups. The adjusted model 

constructed the PRS as the main predictor with adjustments for age, BMI, and ten principal components 

(PCs). The unadjusted model estimated the PRS singularly, while the covariate model analyzed the 

model created by the covariates—age, BMI, and ten PCs—without the PRS. Odds ratios (OR) and 95% 

confidence intervals (CI) and pseudo-R2 were calculated for each model. Area under receiver operator 

curve (AUROC) for the testing set was calculated using the ‘pROC’ R package.28  

3. Results

3.1.   Population characteristics 

Out of 52,548 females in the eMERGE cohort, 23,502 samples passed quality control measures and 

exhibited fibroid status determinable by ICD codes (eMERGE). The average BMI of the overall group 

was 29.07 (standard deviation [SD] = 7.49), with 28.68 (SD = 7.19) for the White-reported race strata 

and 32.44 (SD = 8.66) for the Black-reported race strata. The overall average age was 65.30 (SD = 

18.69), with 66.52 (SD = 18.52) for the White-reported race strata and 56.94 (SD = 18.73) for the Black-

reported race strata. There were 2,290 fibroid cases in the multi-ancestry group. There were 1,784 cases 

in the White-reported race strata and 439 cases in the Black-reported race strata to make the prevalence 

of fibroids 9% and 16%, respectively (Table 1).  

BioVU had 51,715 female samples of which 33,840 samples passed quality control and exhibited 

fibroid status determinable by ICD codes (BioVU-ICD). The average BMI of the multi-ancestry group 

was 29.27 (SD = 7.84). For the White-reported race strata, the average BMI was 28.69 (SD = 7.53), 

and for the Black-reported race strata, it was 32.03 (SD = 8.72). The average age of the overall group 

was 52.53 (SD = 18.61), while it was 54.64 (SD = 18.20) for the White-reported race strata and 45.19 

(SD = 18.19) for the Black-reported race strata. There were 1,076 cases in the multi-ancestry group. In 

the White-reported race strata, there were 596 cases, and in the Black-reported race strata, there were 

420 cases, for a fibroid prevalence of 2% and 7%, respectively (Table 1). 

Of the 51,715 female individuals in BioVU, 9,373 samples passed quality control and had fibroid 

status as determined by the imaging algorithm (BioVU-imaged). The average BMI of the overall group 

was 29.21 (SD = 8.08). In the White-reported race strata, it was 28.55 (SD = 7.69), and in the Black-

reported race strata it was 31.90 (SD = 9.17). The average age of the overall group was 44.86 (SD = 

17.33). The White-reported race strata had an average age of 46.96 (SD = 17.45), and the Black-reported 

race strata had an average age of 38.02 (SD = 15.41). There was a fibroid prevalence of 16% out of 

1,463 cases in the multi-ancestry group, whereas it was 14% of 975 cases in the White-reported race 

strata and 22% of 410 cases in the Black-reported race strata (Table 1). 

3.2.   Polygenic risk score validation 

3.2.1. Multi-ancestry (META) PRS 

The META PRS was validated in the multi-ancestry group of the eMERGE, BioVU-ICD, and BioVU-

imaged cohorts. Student’s T-tests for difference in means found mean META PRS to be significantly 

different between cases and controls in all multi-ancestry cohorts: p = 9.85x10-9 for eMERGE, p = 
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2.50x10-10 for BioVU-ICD, and p = 3.07x10-12 for BioVU-imaged (Table 2). For a one standard 

deviation increase in PRS, the OR for fibroid diagnosis was 1.11 (95% CI: 1.06 – 1.17, p = 2.43x10-5) 

in eMERGE, 1.23 (95% CI 1.15 – 1.32, p = 9.68x10-9) in BioVU-ICD, and 1.26 (95% CI: 1.18 – 1.35, 

p = 2.4x10-12) in BioVU-imaged (Figure 1A). The META PRS performed best in the BioVU-imaged 

cohort with an AUROC of 0.74 (95% CI: 0.71 – 0.77), while the AUROC was 0.67 (95% CI: 0.64 – 

0.69) in the eMERGE cohort and 0.66 (95% CI: 0.63 – 0.69) in the BioVU-ICD cohort (Figure 2A). 

The AUROCs for the covariate models were 0.73 (95% CI: 0.71 - 0.76), 0.66 (95% CI: 0.63 - 0.68), 

and 0.65 (95% CI: 0.62 - 0.69), respectively. 

When the META PRS was applied to each reported race strata separately, it was validated in the 

White-reported race strata of each cohort but not in the Black-reported race strata (Figures 1B and 1C). 

The ORs for the White-reported race strata were 1.15 (95% CI 1.09 - 1.22, p = 6.83x10-7) in eMERGE, 

1.25 (95% CI: 1.15 – 1.39, p = 5.63=10-7) in BioVU-ICD, and 1.34 (95% CI: 1.23 – 1.44, p = 1.34x10-

12) in BioVU-imaged. The META PRS performed best in the White-reported race strata of the BioVU-

imaged cohort with an AUROC of 0.70 (95% CI: 0.66 - 0.73), while the AUROC was 0.63 (95% CI:

0.60 – 0.66) in eMERGE and 0.63 (95% CI: 0.58 – 0.68) in BioVU-ICD (Figure 2B). The AUROCs of

the covariate model were 0.68 (95% CI: 0.65 – 0.72), 0.63 (95% CI: 0.60 – 0.65), and 0.58 (95% CI:

0.53 – 0.64), respectively. When the META PRS was modeled with covariates in the Black-reported

race strata, the model itself had predictability, but the META PRS did not contribute any of the

predictability (Figure 2C).

Cohort 

Reported Race META PRS EUR PRS EAS PRS 

eMERGE 

All 9.85x10-9 1.89x10-7 7.67x10-17 

White 2.49x10-9 0.002 9.90x10-12 

Black 0.57 0.14 0.06 

BioVU - ICD 

All 2.50x10-10 4.10x10-13 4.64x10-6 

White 7.06x10-10 1.06x10-7 0.00063 

Black 0.07 0.21 0.06 

BioVU - imaged 

All 3.07x10-12 6.91x10-11 2.75x10-8 

White 1.77x10-13 2.49x10-10 2.21x10-6 

Black 0.65 0.85 0.12 

Table 2. Polygenic risk score (PRS) T-test results. Student’s T-tests were used to determine if mean PRS was significantly 

different between cases and controls. Significance level is 0.002 (0.05/27 tests). Cases and controls in the multi-ancestry 

(META), European ancestry (EUR), and East Asian ancestry (EAS) PRS were stratified according to race: White reported 

race and non-Hispanic ethnicity (White), Black reported race and non-Hispanic ethnicity (Black), and all the above (All).  
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3.2.2. European ancestry (EUR) PRS 

The EUR PRS was validated in the multi-ancestry and White-reported race strata but not in the Black-

reported race strata for both BioVU cohorts. The EUR PRS was only validated in the multi-ancestry 

strata of the eMERGE cohort. Mean EUR PRS was significantly different between cases and controls 

for all multi-ancestry cohorts: p = 1.89x10-7 for eMERGE, p = 4.10x10-13 for BioVU-ICD, and p = 

6.91x10-11 for BioVU-imaged (Table 2). In the multi-ancestry cohorts, the ORs were 1.18 in both 

BioVU-ICD (95% CI 1.09 – 1.26, p = 8.94x10-6) and BioVU-imaged (95% CI: 1.10 – 1.26, p = 1.89x10-

6) (Figure 1D). The EUR PRS was not associated with the risk of fibroid diagnosis in the eMERGE

cohort (p = 0.30). The EUR PRS performed best in the BioVU-imaged cohort with an AUROC of 0.74

(95% CI: 0.71 – 0.77), while the AUROC was 0.63 (95% CI: 0.60 – 0.66) in eMERGE and 0.67 (95%

Fig. 1. Polygenic risk score (PRS) ten-fold cross validation results stratified by race for each cohort. Race refers to White 

reported race and non-Hispanic ethnicity (WHITE), Black reported race and non-Hispanic ethnicity (BLACK), and all the 

above (ALL). Odds ratios (ORs) are calculated for one standard deviation increase in PRS for adjusted and unadjusted 

models. A/B/C) ORs for all multi-ancestry (META) PRS cohorts. D/E/F) ORs for all European ancestry (EUR) PRS 

cohorts. G/H/I) ORs for all East Asian ancestry (EAS) PRS cohorts. Created with Biorender.com. 
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CI: 0.63 – 0.70) in BioVU-ICD (Figure 2D). The AUROCs for the covariate model were 0.73 (95% CI: 

0.71 – 0.76), 0.66 (95% CI: 0.63 – 0.68), and 0.65 (95% CI: 0.62 – 0.69), respectively. 

The EUR PRS was applied to the White-reported race strata of the cohorts, but it did not show an 

association with the risk of fibroid diagnosis in the eMERGE cohort (p = 0.01) because it did not reach 

the significance level of our ten-fold cross-validation for the EUR PRS (p < 6.17x10-4). The ORs for 

the EUR PRS in the BioVU cohorts were 1.21 (95% CI: 1.10 – 1.32, p = 5.59x10-5) in BioVU-ICD and 

1.29 (95% CI: 1.19 – 1.40, p = 4.69x10-10) in BioVU-imaged (Figure 1E). The EUR PRS performed 

best in the BioVU-imaged cohort with an AUROC of 0.69 (95% CI: 0.66 – 0.72), while the AUROC 

was 0.63 (95% CI: 0.63 – 0.60 – 0.68) in eMERGE and 0.62 (95% CI: 057 – 0.67) in BioVU-ICD 

(Figure 2E). The AUROCs of the covariate model were 0.68 (95% CI: 0.65 – 0.72), 0.63 (95% CI: 0.60 

– 0.65), and 0.58 (95% CI: 0.53 – 0.64), respectively. The EUR PRS did not associate with risk of

Fig. 2. Polygenic risk score (PRS) ten-fold cross validation results stratified by race for each cohort. Race refers to White 

reported race and non-Hispanic ethnicity (WHITE), Black reported race and non-Hispanic ethnicity (BLACK), and all the 

above (ALL). A/B/C) Area under receiver operator curve (AUROC) plots for each multi-ancestry (META) PRS cohort. 

D/E/F) AUROC plots for each European ancestry (EUR) PRS cohort. G/H/I) AUROC plots for each East Asian ancestry 

(EAS) PRS cohort. Created with Biorender.com. 
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fibroid diagnosis in the Black-reported race strata of any cohort nor did the models have predictability 

for fibroid status (Figures 1F and 2F). 

3.2.3. East Asian ancestry (EAS) PRS 

The EAS PRS was validated in the multi-ancestry and White-reported race strata but not the Black-

reported race strata for all cohorts. There was a significant difference in mean EAS PRS between cases 

and controls for all multi-ancestry cohorts: p = 7.67x10-17 for eMERGE, p = 4.64x10-6 for BioVU-ICD, 

and p = 2.75x10-8 for BioVU-imaged (Table 2). In the multi-ancestry cohorts, the ORs were 1.14 for 

both eMERGE (95% CI: 1.09 – 1.20, p = 1.64x10-7) and BioVU-ICD (95% CI: 1.06 – 1.22, p = 3.00x10-

4) cohorts, while the BioVU-imaged cohort had a slightly larger OR of 1.19 (95% CI: 1.11 – 1.27, p =

3.31x10-7) (Figure 1G). The EAS PRS performed best in the BioVU-imaged cohort with an AUROC

of 0.73 (95% CI: 0.71 – 0.76), while the AUROC was 0.68 (95% CI: 0.65 – 0.70) in eMERGE and 0.66

(95% CI: 0.62 – 0.69) in BioVU-ICD (Figure 2G). The AUROCs for the covariate model were 0.73

(95% CI: 0.71 – 0.76), 0.66 (95% CI: 0.63 – 0.68), and 0.65 (95% CI: 0.62 – 0.69), respectively.

When the EAS PRS was applied to the White-reported race strata of each cohort, the ORs were 

similar: 1.19 (95% CI: 1.12 – 1.26, p = 1.26x10-9) in eMERGE, 1.17 (95% CI: 1.07 – 1.28, p = 1.00x10-

4) in BioVU-ICD, and 1.18 (95% CI: 1.09 – 1.28, p = 4.20x10-5) in BioVU-imaged. While the effect

size of the EAS PRS was consistent across cohorts, the PRS had the most predictability in the BioVU-

imaged cohort with an AUROC of 0.69 (95% CI: 0.66 – 0.72). Next was the eMERGE cohort with an

AUROC of 0.64 (95% CI: 0.61 – 0.67) followed by the BioVU-ICD cohort with an AUROC of 0.60

95% CI: 0.54 – 0.65) (Figure 2H). The AUROCs of the covariate model were 0.68 (95% CI: 0.65 –

0.72), 0.63 (95% CI: 0.60 – 0.65), and 0.58 (95% CI: 0.53 – 0.64), respectively. The EAS PRS was not

associated with risk of fibroids in the Black-reported race strata of any cohort, nor did it exhibit

meaningful predictability (Figures 1I and 2I).

4. Discussion

Using current approaches to estimate PRSs and publicly available resources, we constructed and 

validated a multi-ancestry (META) PRS in two separate biobanks. META PRS performed better than 

the single ancestry PRSs, European ancestry (EUR) PRS and East Asian ancestry (EAS) PRS, in all 

cohorts. These findings show the utility of using a multi-ancestry approach over a single ancestry 

analysis for PRS. A PRS constructed from the same summary statistics may work in one target 

population but not others due to a variety of factors including differences in data structures, genotyped 

variants, and ancestry.5 By enabling the use of two ancestries over one to construct a PRS, more genetic 

variation is included in the model, which is precisely what PRS-CSx was created to accomplish.11 

Including multiple different genetic ancestries in a PRS should enable the model to be transferrable to 

other racial groups, further attempting to answer a problem that has led to portability failures of past 

PRS models.  

PRSs have suffered from an inability to transfer across racial and ethnic groups, resulting in 

concerns that use of PRS in precision medicine may further contribute to disparities observed in disease 

trends.8 When our PRS was evaluated by Black-reporting and White-reporting racial strata, there were 

differences in validating the findings. The META PRS strongly associated with fibroid status in the 
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White-reported race strata among all cohorts but failed to validate in any Black-reported race strata. 

Yet, the AUROC of the modeled covariates in the Black-reported race strata was close to, and in some 

cases better than, the AUROC for the adjusted META PRS applied to the White-reported race strata. 

While the META PRS showed no association or predictability with fibroid diagnosis, adding the 

covariates of age, BMI, and ten PCs were sufficient for a prediction model. Additionally, the pseudo-

R2 was higher in the multi-ancestry group than in the racial strata, demonstrating how adding Black-

reporting individuals to the overall model enhances the explained variation. We acknowledge that the 

smaller sample size of Black-reporting individuals may have limited statistical power, potentially 

affecting the precision of effect size estimates and the detection of significant associations. However, 

this limitation is common when studying underrepresented populations, underscoring the need for 

future efforts to increase sample sizes and improve cohort diversity to enhance the generalizability and 

accuracy of PRS in Black-reporting individuals. Excluding these populations from prediction modeling 

only serves to perpetuate health disparities among traditionally underrepresented populations. Thus, 

while META PRS does not hold any predictive power for Black-reporting individuals alone, their 

inclusion in the model remains essential for accurate risk assessment based upon clinical factors for all 

populations.  

A major strength of this study is the use of publicly available resources to construct a multi-ancestry 

fibroid PRS, making it accessible for a broad audience. Utilizing large-scale biobank GWAS summary 

statistics from the FinnGen research project and the Biobank Japan, which have performed GWAS on 

thousands of traits, we demonstrated that these projects are sufficient for future PRS studies, sparing 

researchers from conducting their own on smaller populations. Despite this, we acknowledge the 

'messiness' of clinical data used in these studies is often due to case-control definitions based on the 

presence or absence of a phenotype in an individual's EHR. In particular, case-control definitions based 

on EHRs are often reliant on the presence or absence of a clinical phenotype, which introduces potential 

inaccuracies. For example, fibroid cases may be underdiagnosed in individuals who are asymptomatic, 

resulting in the inclusion of false negatives among controls and subsequently impacting the accuracy 

and robustness of GWAS associations. A more stringent, precise set of case-control criteria, such as 

those incorporating diagnostic imaging, would likely improve both GWAS outcomes and PRS 

performance. This is demonstrated in the study, where the BioVU-imaged cohort, which confirmed 

fibroid diagnoses through imaging, showed improved AUROC and pseudo-R2 compared to the ICD-

defined cohort, demonstrating enhanced predictability and stability from more precise phenotyping.  

Additionally, we observed significant heterogeneity across the populations studied. For instance, 

the Finnish population's unique genetic background, stemming from a founding bottleneck and relative 

isolation, may limit transferability to other populations, thereby affecting PRS-CSx program 

compatibility. This study primarily utilized European and East Asian ancestry data from the FinnGen 

research project and the Biobank Japan, but did not include African genetic ancestry, despite its known 

risk factor for fibroids. This highlights a broader issue in genetic research, where populations of 

European ancestry are often overrepresented, limiting the generalizability of findings. There has been 

one successful fibroid GWAS in individuals of African ancestry, which identified a unique locus 

associated with fibroids.  This may indicate the genetic architecture of fibroids differs significantly 

across ancestries.29,30 Expanding genetic studies into these underrepresented populations should help 

fill in this missing variance, thus increasing the predictability of PRS. We were unable to use the African 
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ancestry summary statistics, as that study was performed by our group with samples from BioVU. 

Removing the overlapping samples from the source population in the BioVU validation cohorts resulted 

in further insufficient sample sizes for the Black-reported race strata in this study. 

In summary, we developed and validated a multi-ancestry (META) PRS in two biobanks, 

demonstrating superior performance compared to single ancestry PRSs (European and East Asian) 

across all cohorts. This underscores the advantage of a multi-ancestry approach, which incorporates a 

broader genetic variation and potentially increases model transferability across different racial groups. 

Despite the META PRS's strong association with fibroid status in White-reported race strata, it showed 

limited predictive power for Black-reported race strata, highlighting a persistent challenge in PRS 

models' applicability across racial groups. Nonetheless, including diverse ancestries in the PRS model 

improved overall prediction accuracy and addressed disparities in health risk assessment. Strengths of 

this study include the use of large-scale biobank data and imaging validation to enhance PRS 

robustness. However, limitations such as inaccurate case-control definitions and a lack of African 

genetic ancestry in the data underscore the need for more inclusive and precise research methodologies. 

Ultimately, while multi-ancestry PRS models hold promise for reducing health disparities, further 

efforts are needed to integrate diverse genetic ancestries and improve predictive accuracy for all 

populations. 
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