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Inflammatory bowel disease (IBD), encompassing Crohn’s disease (CD) and ulcerative colitis (UC), 
has a significant genetic component and is increasingly prevalent due to environmental factors. 
Current polygenic risk scores (PRS) have limited predictive power and cannot inform time of 
symptom onset. Circulating proteomics profiling offers a novel, non-invasive approach for 
understanding the inflammatory state of complex diseases, enabling the creation of proteomic risk 
scores (ProRS). This study utilizes data from 51,772 individuals in the UK Biobank to evaluate the 
unique and combined contributions of PRS and ProRS to IBD risk prediction. We developed ProRS 
models for CD and UC, assessed their predictive performance over time, and examined the benefits 
of integrating PRS and ProRS for enhanced risk stratification. Our findings are the first to 
demonstrate that combining genetic and proteomic data improves IBD incidence prediction, with 
ProRS providing time-sensitive predictions and PRS offering additional long-term predictive value. 
We also show that the ProRS achieves better predictive performance among individuals with high 
PRS. This integrated approach highlights the potential for multi-omic data in precision medicine for 
IBD. 

Keywords: plasma proteomics; polygenic risk score; autoimmunity; multi-omics; inflammatory 
bowel disease. 

1. Introduction

Inflammatory bowel disease (IBD) represents a chronic inflammatory condition of the 
gastrointestinal tract. Its subtypes, Crohn’s disease (CD) and ulcerative colitis (UC) are related but 
unique conditions with differing properties, symptoms, and risk factors.1 IBD affects approximately 
2.4 to 3.1 million people in the United States, with most diagnoses occurring in adulthood.2–4 
Epidemiologic and genetic studies have demonstrated that these inflammatory conditions are driven 
by a complex interplay between genetic susceptibility and environmental factors. Genome-wide 
association studies (GWASs) have identified over 200 significant genetic loci,5 and family history 
of the disease is the strongest risk factor.6 Multiple lifestyle factors,7,8 including smoking and 
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psychological stress, as well as environmental factors9 such as urbanization, industrialization, and 
westernization are also associated with the onset and progression of IBD.  

Patients with IBD often develop severe complications, including strictures or fistulas in the 
intestine, and in extreme cases, colorectal cancer. Therefore, identifying high-risk individuals before 
the onset of IBD symptoms is crucial to potentially preventing or delaying irreversible bowel 
damage and disease progression.10 Many studies have developed models to stratify high-risk and 
low-risk individuals for CD and UC using polygenic risk scores (PRSs) that incorporate GWAS 
summary statistics and individual genotype data.11,12 PRSs use genetic variants to estimate an 
individual’s susceptibility to developing a disease. However, since IBD is also influenced by non-
genetic factors like lifestyle and environmental influences, accurately assessing IBD risk using 
models based solely on genetic data is challenging. 

IBD is an autoimmune condition, so the current state of an individual's immune system provides 
valuable information about symptom onset.13 While genetic data provide insights into susceptibility, 
they cannot predict when symptoms will appear or how the disease will progress. A PRS can identify 
individuals with high genetic risk for IBD, but these individuals may not necessarily develop the 
disease if they effectively manage factors that influence their immune system and overall health. 
This highlights the importance of integrating both genetic predisposition and variable non-genetic 
factors for a comprehensive assessment of IBD risk. 

Recently, high-dimensional circulating plasma proteomics profiling has been used as a non-
invasive tool to understand complex diseases on a large scale and act as endophenotypes related to 
disease pathogenesis and progression. Plasma proteomics provide a snapshot of an individual’s 
current immune status, including many health-related processes and pathways. Studies have found 
proteins associated with the prevalence of a range of complex diseases,14,15 including IBD.16,17  
Additionally, protein levels prior to diagnosis have been linked with subsequent disease onset,18,19 
including in IBD,20 further motivating their use as a predictive tool. Consequently, these 
developments produced proteomic risk scores (ProRS), where protein signatures are consolidated 
into a score for the current risk of developing a disease.21–23 Proteomic signatures are broadly more 
predictive of complex disease incidence and prevalence than PRS.15,24 However, many diseases have 
both genetic and non-genetic components predictive of disease onset, so efforts have been made to 
combine scores through multi-omic integration of PRS and ProRS. Evidence suggests this 
combination improves the prediction of coronary artery disease,25 coronary plaques,26 and type 2 
diabetes;22 however, this has not been explored in IBD. 

We used data from 51,772 patients in the UK Biobank (UKB) to characterize the unique 
contributions of polygenic risk and proteomic risk to IBD onset prediction in the largest available 
proteomics dataset (Figure 1). Despite the superior performance of ProRS compared to PRS for IBD 
risk assessment, we combined circulating plasma proteomics with genetics in two ways to leverage 
their gene-environment (GxE) interactions27 and provide a more comprehensive risk assessment. 
We directly integrated proteomics and genetics as predictors in the same model, as well as stratified 
patients by PRS before assessing ProRS, showcasing the interactions between the two modalities 
and identifying disease-associated protein biomarkers. Since proteomics data can be obtained during 
a routine clinical blood test, we tested the accuracy of a personalized medicine approach through 
omics integration for IBD risk. 
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2.  Methods 

 
 

Fig. 1.  Study Overview. Data was collected from UKB including plasma protein levels, disease-specific PRS 
models, age, sex, and ICD-10 codes. Cases were separated into prevalent and incident groups, and the fraction 
of cases that were prevalent determined the fraction of controls assigned to the training set. The rest were 
assigned to the testing set. The training set was used to create logistic regression models for the covariate-only 
model and covariate-adjusted PRS as well as LASSO models for the ProRS and combined score.  

2.1.  Data and study participants 

2.1.1.  UK Biobank 

We used data from the UKB, a large-scale biomedical database that provides an extensive collection 
of genetic, health, and lifestyle information from half a million participants from the UK aged 40-
69 at recruitment. With genotype information, International Classification of Diseases (ICD) codes 
from electronic health records, and biological samples saved for later analysis, the biobank provides 
the largest resource to study IBD. The breadth of data collected by the UKB and its large sample 
sizes enabled this project to analyze multi-omic data in a substantial sample with an adequate 
number of disease cases.  

2.1.2.  Circulating proteomics 

In October 2023, the UKB released plasma protein levels of 53,018 blood samples from participants 
collected at recruitment between 2006 and 2010 as part of the Pharma Proteomics Project (UKB-
PPP).28 The circulating levels of 2,923 proteins were recorded using the Olink Explore 3072 
proximity extension assay. The data had about 17.5% missingness. To preserve as many samples as 
possible, the missing values were imputed using the k-nearest neighbors imputation method with 
𝑘 = 10.29 Before imputation, individuals with greater than 54% missingness (n = 698) and proteins 
with greater than 30% missingness (n = 3) were excluded, reducing the total missingness to 9.5%.  
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2.1.3.  Phenotyping 

Binary phenotypes for each IBD subtype were established using the ICD diagnosis codes K50* for 
CD and K51* for UC. If an individual’s date of first report of disease occurrence was before their 
blood draw, from which circulating proteomics were profiled, they were labeled as a prevalent case. 
If their date of first disease occurrence was after their initial blood draw, they were labeled as an 
incident case. Otherwise, they were considered controls (Figure 1). Additionally, Hospital Episode 
Statistics were used to identify the specific ICD code for each case. A rheumatologist classified each 
code within K50* and K51* as an autoimmune disease or other rheumatic condition. 35 individuals 
with codes in the UC block (K51) that had non-autoimmune diseases (K51.4, K51.5) but no other 
autoimmune disease in the block, were removed from the analysis. 55 individuals had both CD and 
UC codes at baseline, and so were considered prevalent cases in both models. For survival analysis, 
individuals were considered to have the event at their date of first occurrence of the disease. 
Individuals were censored at their date of death if they appeared in the central death registry. To 
generalize the findings as much as possible, our analyses included all individuals, regardless of 
ancestral background. However, the vast majority of the study population self-identified as white 
British (n = 43,047, 83.1%).  

2.2.  Risk Scoring 

We developed a ProRS for each of UC and CD to quantify the likelihood of disease onset in 
undiagnosed individuals using proteomics data. To differentiate protein levels between healthy 
subjects and IBD patients, we stratified cases by time of disease onset (see Phenotyping) and used 
the prevalent cases for model development (training set). Since ProRS aims to predict future IBD 
onset after blood collection, the incident cases were used for model evaluation (testing set). Due to 
limited follow-up time in the UKB, there are fewer incident IBD cases compared to prevalent cases. 
This discrepancy results in an imbalance between the number of training and testing cases, which 
could potentially affect the accuracy and evaluation of our models by introducing bias and reducing 
generalizability. To address this imbalance, we randomly split controls into the training and testing 
sets with the same ratio as prevalent to incident cases in the data.  

The train/test split can be described as follows. Let 𝑺!"#$%&#'( (⋅) and 𝑺!('!&#'((⋅) be the case set of 
patients who were diagnosed with the disease before and after blood collection respectively, where 
the parentheses represent the disease of interest. Given the index disease, the control set is defined 
as 𝑺&)%!")*(⋅) 	= {𝑺!"#$%&#'( (⋅) ∪ 𝑺!('!&#'((⋅)}& . We then randomly selected the training control set 
𝑺!"#$%&)%!")*(⋅) from 𝑺&)%!")*(⋅) such that the proportion of all controls that are in 𝑺!"#$%&)%!")*(⋅) equaled the 
proportion of the total number of cases (|𝑺!"#$%&#'( (⋅) + 𝑺!('!&#'((⋅)|) that are prevalent cases (|𝑺!"#$%&#'( (⋅)|). 
The testing control set is then the remaining set of controls: 

/
𝑺!"#$%&)%!")*(⋅) 	⊂ 	𝑺&)%!")*(⋅)

𝑺!('!&)%!")*(⋅) = 	𝑺&)%!")*(⋅)	\	𝑺!"#$%&)%!")*(⋅)
 

 
This approach ensures that the model is trained and evaluated on disjoint datasets with balanced 

case-control ratios so that the ProRS’s performance can be accurately assessed despite the 
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differences in the numbers of prevalent and incident IBD cases. The resultant case and control 
counts in each set for both diseases are shown in Table 1. 

To evaluate the contribution of each omic level to risk prediction, four models were created for 
CD and UC separately: a covariate-only model, PRS, ProRS, and a combined model. The covariate 
model used only the age at plasma protein measurement and sex in an unpenalized logistic 
regression, acting as a baseline prediction. The PRS model was based on scores from Thompson et 
al.,30 which were added as predictors to an unpenalized logistic regression with the covariates. After 
removing individuals missing a PRS, we analyzed an overall sample size of 51,772 for CD and 
51,737 for UC.  

Since not all 2,920 proteins are expected to be informative of disease status, we applied 
covariate-adjusted Least Absolute Shrinkage and Selection Operator (LASSO) models to develop 
the ProRS while adjusting for potential confounders (sex and age).31 The method allows for 
simultaneous protein marker selection and regularization, defined by the equation: 

𝛽3 = argmin+:log =exp =−𝑦,(𝑋,-𝛽)D + 1D 	
.

,/0

+ 𝜆:F𝛽1F
2

1/0

 (1) 

where 𝑛 is the sample size, 𝑦, is the class information (case or control) for individual 𝑖, 𝑋, are the 
values of the predictors (circulating protein levels and covariates), 𝛽1 is the regression coefficient 
for predictor 𝑗, 𝑝 is the number of predictors, and 𝜆 is the regularization parameter controlling the 
strength of the penalty. Protein features with non-zero coefficient (𝛽1 ≠ 0) in the trained model were 
considered significant proteins associated with IBD. The chosen 𝜆 was the minimum 𝜆 from 5-fold 
cross-validation. The combined model was created in the same fashion, with all protein values, the 
PRS, age, and sex as predictors in a LASSO model. Prior to LASSO, each predictor was 
standardized to a mean of 0 and standard deviation of 1 so that the coefficient magnitudes would be 
comparable. Scores for all four models were computed for each individual in the disease’s testing 
set for further analysis and performance evaluation of disease onset prediction. 
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2.3.  Statistical Analyses 

2.3.1.  Risk prediction evaluation 

All data analyses were performed in R 4.4.0. All models were adjusted for age and sex. Area under 
the receiver operating characteristic curve (AUC) and Nagelkerke’s R2 were used as evaluation 
metrics to assess the classification ability of each quantitative score.32 DeLong’s test was used to 
compare AUCs and establish confidence intervals33 with the pROC R package.34 This nonparametric 
approach is suitable for comparing AUCs of two correlated receiver operating characteristic curves, 
especially when the models are built from the same samples. The CD and UC ProRS models had 
more proteins with non-zero coefficients than the combined models. In order to evaluate their 
genetic backing, SNP-based heritability estimates were established for the circulating levels of each 
protein from pQTL summary statistics of European ancestry individuals28 using LD score regression 
of roughly 1.2 million HapMap3 SNPs.35 Gene set enrichment analysis was then used to test if the 
heritability estimates were higher in the sets of removed proteins than expected by chance. This 
analysis was run with the clusterProfiler R package36 using the heritability estimates of all 2,923 
proteins as the background set. Kaplan-Meier cumulative incidence curves were constructed to 
visualize and test the cumulative incidence of each disease using the survminer R package.37  

2.3.2.  Longitudinal Analyses 

As protein levels in an individual are dynamic while genotypes are static, performances of the PRS 
and ProRS models were evaluated in the short term (5 years) and in the long term (10 years) after 
the blood draw. In these experiments, individuals were only considered incident cases if they were 
diagnosed with the disease within that time frame (five or ten years). Otherwise, they were 
considered controls. 

To test the relationship between the ProRS and time to diagnosis, mean scores were calculated 
on a backward timescale for each year leading up to the diagnosis date. Those who would go on to 
develop IBD were tested against those who did not. Using the approach described in Guo, You, 
Zhang et al., a nested case-control study was implemented to match individuals with incident 
diagnosis events to healthy controls.38 Individuals were matched based on age and sex, with a 1:5 
case-control ratio. The event date for matched controls was set to their corresponding case, and 
incident cases past 14 years were set to have an event date of 14 years. Mean values at each time 
point were fitted using locally weighted smoothing curves (ɑ = 0.8). The Mann-Kendall trend test 
was used to compare differences in ProRS between cases and controls longitudinally. 
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3.  Results 

3.1.  Genomics and proteomics uniquely predict IBD incidence 

 
Fig. 2. Longitudinal Analysis. (A + B) Kaplan Meier curves of time to disease onset, stratified by PRS and 
ProRS. Individuals are considered high risk when at the 75th percentile or higher. (C + D) AUC of risk score 
models at five and ten years after blood draw. (E + F) ProRS of disease cases compared to age- and sex-
matched controls using locally weighted smoothing curves, where the x-axis represents the time after blood 
draw that individuals were diagnosed. (A,C,E) for Crohn’s disease, (B,D,F) for ulcerative colitis. 

3.1.1.  PRS and ProRS both effectively stratify individuals at risk for IBD 

ProRS models for CD and UC were developed using LASSO, selecting 216 proteins and 338 
proteins, respectively, to predict disease onset. Although age and sex were included as input 
variables, neither the CD nor the UC model included these covariates as significant features, 
aligning with the known lack of a sex bias in these diseases.39 Consistent with other studies, both 
PRS and ProRS effectively stratified individuals at high risk for disease (Supplemental Figure 1). 
We also observed that high ProRS was more distinguishing than high PRS. To assess their combined 
predictive utility, we stratified individuals based on both polygenic risk and proteomic risk. This 
yielded a cumulative incidence curve with four strata (Figure 2A-B), where high risk was defined 
as greater than the 75th percentile for each score, and low risk as all others. Interestingly, polygenic 
risk further stratified individuals within the proteomic risk categories, suggesting PRS can offer 
additional information on time to disease onset beyond what ProRS can provide.  

Pacific Symposium on Biocomputing 2025

528



 
 

 

3.1.2.  ProRS are time-sensitive and reduce in predictive ability over time 

Since circulating protein signatures indicate current health status, we hypothesized that the ProRS 
predictive accuracy is higher closer to disease onset, while stable for PRS. We tested the models at 
5 years and 10 years post blood draw, finding that the ProRS model had an AUC reduction of 0.04 
in both CD and UC (CD: 0.74→0.70, UC: 0.73→0.69). The PRS AUC, however, remained similar 
in both diseases (Figure 2C-D). This reduction may be explained by the observation that the ProRS 
for both CD and UC increased dramatically in the ~5 years preceding disease diagnosis, whereas 
matched controls demonstrated little difference in risk over time (Figure 2E-F). The increasing 
difference in mean ProRS between cases and controls at each time point indicates a likely increase 
in IBD protein signatures in the years leading up to disease onset (CD: p = 0.011, UC: p = 0.063). 

3.2.  Genomics and proteomics in combination improve IBD prediction 

 
Fig. 3. Combining PRS and ProRS. (A + B) R2 estimate for disease incidence variance in the covariate-
only model and the adjusted PRS, ProRS, and combined models.  (C + D) AUC comparison of risk score 
models to predict disease incidence. (E + F) Performance of the ProRS model in high disease-risk 
individuals (>75 percentile) and low disease-risk individuals (<75 percentile). (A,C,E) for Crohn’s disease, 
(B,D,F) for ulcerative colitis. 

3.2.1.  PRS adds complementary predictive information to ProRS 

We evaluated each risk score individually and in combination to test their unique and combined 
contributions to IBD risk prediction. As previously observed, the ProRS had a much higher R2 
(Figure 3A-B) and AUC (Figure 3C-D) than the PRS for predicting IBD subtype incidence, 
indicating that ProRS more meaningfully stratifies patients at high risk for the disease. The 
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combined model, however, outperforms either omic modality alone. Compared to the ProRS model, 
the combined model’s R2 increased by 0.012 in CD and 0.016 in UC, while AUC increased by 0.020 
in CD and 0.024 in UC. This emphasizes the importance of both genetic and proteomic screening 
in the clinic to identify patients likely to develop CD or UC soon. 

3.2.2.  Adding PRS to ProRS removes more heritable proteins 

In the construction of the ProRS, LASSO selected 216 predictors for CD and 338 for UC. When the 
PRS was added as a predictor, it became a significant predictor with the 9th largest coefficient in CD 
and the 4th largest in UC. The number of predictors with non-zero coefficients decreased to 203 in 
CD and 284 in UC. We hypothesized that the PRS might replace proteins whose levels are 
influenced by genetics. To test this, we used LD score regression to estimate the heritability for each 
protein and performed gene set enrichment analysis to see if the heritabilities for the removed 
proteins were significantly higher than expected by chance. These sets consisted of 24 proteins for 
CD and 66 proteins for UC. With a p-value of 0.004 for CD and 0.08 for UC, there is evidence that 
the PRS accounts for heritable differences in protein levels. 

3.2.3.  High PRS for CD and UC is associated with better incident disease prediction accuracy 

It is thought that genetically susceptible individuals develop IBD due to specific environmental or 
lifestyle triggers. We hypothesize that protein measurements can reflect when such conditions are 
met. To test this, we stratified individuals into high (>75 percentile) and low (<75 percentile) PRS 
groups and evaluated the accuracy of ProRS (Figure 3E-F). Compared to the low PRS group, we 
observed that the AUC in the high PRS group is 0.091 higher in CD (p = 0.041), and 0.089 higher 
in UC (p = 0.029). This suggests that an IBD-related inflammatory state from the ProRS model is 
more predictive in those already known to be at higher risk. This substantial difference in ProRS 
classification may be explained by higher false positive rates in the low PRS group, resulting from 
inflammatory states not caused by IBD. 

4.  Discussion 

We evaluated the predictive ability of circulating plasma proteins and genetics for IBD risk and their 
interactions. Our study highlights three novel findings with implications for their clinical utility. 
Firstly, combining proteomic and genomic information enabled more precise patient stratification 
into risk groups. This approach yielded better predictive performance, as indicated by higher AUC 
and R2 values, and improved survival analysis for predicting time-to-disease onset. Secondly, 
stratifying patients by PRS revealed substantial differences in the ProRS model performance for 
predicting later onset of CD and UC. This may indicate that the inflammatory protein signature is 
more likely to be an accurate marker of the disease in individuals with high PRS, as opposed to 
being a confounding condition in low PRS individuals. Thirdly, we found that ProRS prediction 
accuracy decreases over time, whereas the performance of PRS remained stable. This is likely 
because ProRS, based on dynamic circulating plasma protein levels, becomes less distinguishing 
over time, while the static nature of PRS maintains its predictive power.  

IBD is a highly polygenic and heritable disease with a significant environmental component. A 
leading theory of IBD pathogenesis is that environmental exposures in life may trigger inflammatory 
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bowel disease in genetically susceptible individuals.40 Although this exposure component is difficult 
to measure, the genetic component is increasingly measurable. Additionally, circulating proteins 
can act as an early endophenotype to indicate whether the exposure has happened, and autoimmunity 
initiated. Our demonstration that the performance of ProRS to predict onset of IBD subtypes is 
increased in high PRS individuals provides further support to this theory.  

Advancements in proteomic technologies have enabled biobanks to generate large-scale data for 
analyzing the circulating proteome, with many new projects already underway.41,42 Thus, the utility 
of risk scoring for precision medicine in both clinical and research settings is becoming more 
realistic. With increasingly affordable genotyping technologies, it is plausible that lifetime 
polygenic risk for diseases could be part of a patient’s health history available to clinicians. If 
circulating plasma proteomics were measured in a patient and a ProRS developed, the additional 
insight from a PRS could help refine this risk. For example, higher PRS could indicate higher 
confidence in the estimated probability of developing IBD. Additionally, the falling accuracy of 
ProRS over time suggests scores from older data should be analyzed with skepticism. Given the 
difference in the cost of genotyping a patient and generating proteomics panels, we suggest an initial 
assessment with a cheaper genomics approach may be more efficient. If a patient is at high genetic 
risk for IBD, regularly generating proteomics panels may be necessary. 

There are several limitations in our study motivating future work. We used a simple linear model 
with an L1 penalty to generate the ProRS, but such models may oversimplify the complex biological 
interactions between circulating proteins and genetic factors. Although preliminary evidence 
suggests that ensemble methods for proteomic scores perform equally to linear methods when 
predicting cardiovascular events31, linear models inherently cannot capture higher-order interactions 
that might be important for predicting disease risk. In future studies, more sophisticated 
computational methodologies should be explored for predictive capacity, such as graph machine 
learning algorithms that might better represent the relationships between biological entities. Another 
limitation is that this study was only performed in one biobank, with no external validation. Given 
the uniqueness of the UKB proteomics dataset, it is not possible to replicate the results on a large 
scale, but more datasets will soon be available for validation. This single biobank also means that 
results can only be interpreted for a British population. The effect of ancestry could not be 
sufficiently evaluated in this study due to power constraints. However, protein risk scores have been 
reported to be transferable across populations with no heterogeneity in effect, even with models 
trained on much smaller sample sizes.31 Nonetheless, we acknowledge the need for more diverse 
cohorts in multi-omic studies. A further limitation of the UKB is the well documented challenge of 
using mapped ICD-10 codes for phenotyping.43 Studies suggest positive predictive values of >70% 
for mapping electronic health records to stroke44 and acute myocardial infarction,45 however further 
work is needed to evaluate their accuracy in phenotyping IBD onset. 

This study demonstrates the predictive nature of genetic risk scores, proteomic risk scores, and 
especially their combination, on IBD incidence. Future work involves using large biobank 
proteomics to predict IBD progression and prognosis, as shown in smaller studies.46,47 There is also 
evidence that proteomics48 and genomics49 can be employed to subtype IBD, and their integration 
may be useful to further distinguish disease types to inform the best clinical care. Our approach is 
appropriate to analyze any heritable condition that can arise throughout life and would be valuable 
to apply to more autoimmune and neurodegenerative diseases. These results offer hope for 
successfully integrating biological data to improve risk prediction. 
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