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The emergent abilities of large language models (LLMs) have demonstrated great potential
in solving medical questions. They can possess considerable medical knowledge, but may
still hallucinate and are inflexible in the knowledge updates. While Retrieval-Augmented
Generation (RAG) has been proposed to enhance the medical question-answering capabili-
ties of LLMs with external knowledge bases, it may still fail in complex cases where multiple
rounds of information-seeking are required. To address such an issue, we propose iterative
RAG for medicine (i -MedRAG), where LLMs can iteratively ask follow-up queries based
on previous information-seeking attempts. In each iteration of i -MedRAG, the follow-up
queries will be answered by a vanilla RAG system and they will be further used to guide
the query generation in the next iteration. Our experiments show the improved performance
of various LLMs brought by i -MedRAG compared with vanilla RAG on complex questions
from clinical vignettes in the United States Medical Licensing Examination (USMLE), as
well as various knowledge tests in the Massive Multitask Language Understanding (MMLU)
dataset. Notably, our zero-shot i -MedRAG outperforms all existing prompt engineering and
fine-tuning methods on GPT-3.5, achieving an accuracy of 69.68% on the MedQA dataset.
In addition, we characterize the scaling properties of i -MedRAG with different iterations
of follow-up queries and different numbers of queries per iteration. Our case studies show
that i -MedRAG can flexibly ask follow-up queries to form reasoning chains, providing an in-
depth analysis of medical questions. To the best of our knowledge, this is the first-of-its-kind
study on incorporating follow-up queries into medical RAG.
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1. Introduction

Generative artificial intelligence (AI) technologies such as large language models (LLMs)
have brought a wide variety of opportunities for biomedical applications.1–4 For example,
they have shown great potential for answering biomedical questions,5–9 summarizing medical
documents,10–12 and matching patients to clinical trials.13–16 However, LLMs often generate
plausible-sounding but inaccurate content, an issue commonly known as “hallucination” in
the literature.17 They also possess outdated knowledge obtained from a fixed set of training
data.18 Retrieval-augmented generation (RAG) provides a lightweight post-training solution
to these issues by providing LLMs with relevant documents retrieved from up-to-date and
trustworthy sources.19,20

While there have been several medical applications of RAG, such as Almanac,21 Clinfo.ai,22

and MedRAG,23 their RAG component is mainly beneficial to questions that have direct
answers in a single document, such as those in the PubMedQA24 and BioASQ25 datasets.
However, only marginal improvements are seen with RAG for questions that require multiple
rounds of clinical reasoning like MedQA,26 a dataset curated from medical license examina-
tions. For example, to recommend a treatment for a patient with certain symptoms, a system
needs to first infer the potential diagnosis from the symptoms and then find a suitable treat-
ment for the diagnosis. Nevertheless, only one round of retrieval is conducted in the vanilla
RAG architecture, prohibiting multiple rounds of information seeking that are required in
complex clinical reasoning.

In this work, we propose i -MedRAG, a simple and effective framework for incorporating
follow-up queries into RAG. Specifically, we prompt LLMs to iteratively generate follow-up
queries to search for additional information from external medical corpora. The queries and
the corresponding answers generated with RAG will be used to augment the answer generation
of the original question. Empirical results demonstrate the effectiveness of i -MedRAG on both
open- and close-source LLMs, which show improved performance on the United States Medical
Licensing Examination (USMLE) subset of MedQA and medical questions from the Massive
Multitask Language Understanding (MMLU) dataset. Our further analysis of the number of
iterations and number of queries per iteration used in i -MedRAG reflects how its performance
scales with different settings. Additionally, we present several case studies of i -MedRAG,
showing how it overcomes the limitations in vanilla RAG to find the correct answers.

In summary, our contributions are three-fold:

• We introduce i -MedRAG, a novel RAG architecture that incorporates follow-up queries
to solve complex reasoning tasks.

• We have conducted comprehensive experiments on medical question answering, and
the results demonstrate that i -MedRAG not only outperforms vanilla RAG approaches
but also surpasses all other prompt engineering approaches on MedQA with GPT-3.5,
setting a new state-of-the-art performance of 69.68%.

• We also provide analyses to further characterize i -MedRAG, showing how its perfor-
mance varies with the scaling of follow-up queries.
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2. Related Work

2.1. Retrieval-Augmented Generation for Medicine

Retrieval-augmented generation (RAG) has been widely adopted in medicine. Here, we discuss
several representative approaches. Almanac21 is a system that augments LLMs with curated
resources for medical guidelines and treatment recommendations, which shows improvements
over the standard LLMs in six manually assessed metrics. Similarly, Low et al.27 demonstrate
the improvements of RAG-based systems for real-world clinical queries with manual evalua-
tion. Clinfo.ai22 is an open-source web application that answers clinical questions based on
retrieved scientific literature from PubMed articles. Xiong et al.23 conduct a benchmarking
study with the MedRAG toolkit, and show the benefits of RAG in several medical multi-choice
question answering datasets. There are also various biomedical literature search products28

that use RAG to summarize the retrieved articles,29 such as OpenEvidencea and ChatRWDb.
However, most of the RAG studies in medicine use the vanilla architecture with only one
round of retrieval. There have been several attempts to use iterative data refinement for LLM
training30 or RAG31–33 in the general domain. Nevertheless, similar ideas have not yet been
explored in the medical domain. To the best of our knowledge, our study presents the first
approach and evaluations on incorporating follow-up queries in RAG for medicine.

2.2. Medical Question Answering

Question answering tasks such as MedQA,26 PubMedQA,24 MedMCQA,34 BioASQ,25 and
Massive Multitask Language Understanding (MMLU)35 are commonly used to benchmark
the medical knowledge and reasoning capabilities of LLMs.36 Most of these datasets focus on
single-hop questions such as “what is the most common symptom of hypertension?”, while
only MedQA questions are longer patient vignettes where both medical knowledge and multi-
step reasoning are required. As such, there have been many studies working on improving the
GPT-3.5 performance on MedQA with prompt engineering. Figure 1 shows the comparison
among different representative prompt engineering approaches on MedQA, including chain-of-
thought (CoT) prompting,37 self-consistency (SC) prompting,38 multi-agent communication
with MedAgents,39 and RAG-based approaches such as Knowledge Solver (KSL),40 LLMs
Augmented with Medical Textbooks (LLM-AMT),41 and MedRAG.23 Much fewer studies
focus on prompt engineering with GPT-4 on MedQA,7,42 probably because the raw GPT-4
error rate43 is close to the noise rate in MedQA annotations.44 In this study, we focus on the
zero-shot setting as it reflects realistic clinical scenarios. While not requiring any instances for
training or few-shot learning, our approach surpasses all previous methods with GPT-3.5 on
the MedQA dataset.

3. Methods

Figure 2 shows the overview of our i -MedRAG and its comparison to the vanilla Retrieval-
Augmented Generation (RAG). Different from RAG, our i -MedRAG modifies its pipeline by

ahttps://www.openevidence.com/
bhttps://www.atroposhealth.com/chatrwd
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Fig. 1. Comparison of various methods proposed to improve GPT-3.5 performance on MedQA. Our
zero-shot i -MedRAG outperforms all previous prompt engineering and fine-tuning methods.

replacing the information retrieval step (Figure 2 left) with our proposed iterative question-
answering step (Figure 2 middle and right). The settings of RAG are described in Section 3.1
and the pipeline of our new i -MedRAG is discussed in Section 3.2. The details of the iterative
question answering are described in Section 3.3.

3.1. Retrieval-Augmented Generation

In the zero-shot setting of medical question answering, the task of LLM M is trying to find the
correct answer A given the question Q only. The ideal answer prediction Ã can be provided
by

Ã = argmax
A

PM(A | Q, inst.), (1)

where the “inst.” is the task instruction the user provides that instructs the model to perform
the task. As medical questions are knowledge-intensive,36 it benefits from accessing large-scale
external corpora to search for useful information.21–23 A typical method to combine LLM
reasoning with external corpora is RAG, which first retrieves relevant documents from the
corpus for the given medical question and enters the retrieved documents along with the
question into LLM to augment its answer generation. Formally, the RAG pipeline can be
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Fig. 2. Overview of i -MedRAG and its comparison to RAG (MedRAG). Left: the pipeline of
Retrieval-Augmented Generation (RAG). Middle: the pipeline of our proposed i -MedRAG. Right:
the iterative generation of question-specific medical query-answer (QA) pairs by asking follow-up
queries.

described as

Ã = RAG(Q;M,R,D) = argmax
A

PM(A | Q, inst., {di}Ni=1), (2)

where {di}Ni=1 are the question-specific retrieved documents given by

{di}Ni=1 = R(Q;D). (3)

Here R is the text retriever and D is the corpus with a collection of documents.

3.2. Iterative Retrieval-Augmented Generation

While RAG exhibits promising performance in medical question answering,23 it may be unable
to handle certain complex medical questions in real-world cases. As text retrievers are typically
trained to find relevant documents based on text similarity or lexicon overlap, they cannot
break down a complex question and search for relevant information in a step-by-step manner.
Thus, the inflexible retrieval step (Formula 3) in RAG may fail to analyze medical questions
and find useful information to augment the answer generation, especially in complex clinical
cases, where multiple rounds of information-seeking are required.

To address the issues mentioned, we propose to incorporate flexible information retrieval
by prompting LLMs to iteratively generate follow-up queries based on the given medical
question and previous information-seeking history. Moreover, as the context lengths of LLMs
are limited, it can be impractical and infeasible to include all retrieved documents in the
LLM context. Therefore, we prompt LLMs to directly answer the raised queries with relevant
information and use such query-answer pairs as the information-seeking history. The pipeline
of our proposed system can be formulated as

Ã = i-MedRAG(Q;M,R,D) = argmax
A

PM(A | Q, inst., {(qi, ai)}Ni=1), (4)
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where {(qi, ai)}Ni=1 are the queries and the corresponding answers generated by LLMs with the
help of RAG. The iterative process of query and answer generation will be detailed in Section
3.3.

3.3. Iterative Generation of Follow-up Questions

While the retrieved documents in RAG are determined by the question and the retrieval sys-
tem, we propose to incorporate the reasoning capabilities of LLMs in i -MedRAG by prompting
them to dynamically generate helpful queries in a step-by-step manner. Specifically, the LLM
will be encouraged to generate n different queries to help find useful additional information for
m iterations. In all iterations except for the first one, the model will be given the information-
seeking history to generate context-specific follow-up queries. The queries qi1, · · · , qin generated
in the i-th iteration can be formulated as

qi1, · · · , qin =


argmax
qi1,··· ,qin

PM(qi1, · · · , qin | Q, inst.′), if i = 1,

argmax
qic1,··· ,qin

PM(qi1, · · · , qin | Q, inst.′, {(qjk, ajk)}k=1,··· ,n
j=1,··· ,i−1), if i > 1.

(5)

Different from the “inst.” in Formula 2, the “inst.′” here is a modified instruction which
focuses on generating follow-up queries instead of answering the medical question. For each
query generation step, we prompt the LLM to analyze the existing information first and then
generate new queries for additional knowledge. The step-by-step “reason-then-query” pipeline
helps LLMs break down complex medical questions and find useful information from the
external corpus. The answer to each generated query is given by a RAG system mentioned in
Formula 2. This enables the system to leverage existing literature to provide grounded answers
for generated queries.

The overall algorithm of i -MedRAG is presented in Algorithm 1.

4. Experiments

4.1. Evaluation settings

To evaluate the performance of our proposed i -MedRAG on knowledge-intensive medical
question-answering tasks and compare it with other approaches, we select MedQA26 as the
testbed, which contains medical questions collected from United States Medical Licensing
Examination (USMLE). With complex clinical cases in the dataset, MedQA reflects the dif-
ficulty of decision-making in real-world clinical medicine. The approaches for comparison are
prompt engineering or fine-tuning methods that try to improve the performance of GPT-
3.5 on MedQA, including chain-of-thought (CoT) prompting,43 self consistency (SC), knowl-
edge solver (KSL),40 medical agents (MedAgents),39 LLMs augmented with medical textbooks
(LLM-AMT),41 medical retrieval-augmented generation (MedRAG),23 and LLMs with test-
time adaptations (MedAdapter).45

Additionally, we evaluate the generalizability of our i -MedRAG with more LLMs and
medical datasets. Llama-3.1-8B is selected as the representative of open-source models, which
has a context window of 128k tokens. We also include MMLU-Med, a set of six medical
tasks (anatomy, clinical knowledge, professional medicine, human genetics, college medicine,
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Algorithm 1 The algorithm of i -MedRAG for medical question answering

Input medical question Q, large language model M, text retriever R, medical corpus D, query
instruction “inst.′”, answer instruction “inst.”, hyperparameters m,n,N

Output answer prediction Ã
1: Initialize the information-seeking history H = emptylist()
2: for i in 1, 2, · · · ,m do
3: if i = 1 then
4: generate n new queries qi1, · · · , qin using M given Q
5: else if i > 1 then
6: generate n new queries qi1, · · · , qin using M given Q and H
7: end if
8: for j in 1, 2, · · · , n do
9: retrieve N relevant documents d1ij , · · · , dNij using R and D given qij
10: generate the answer aij using M given qij and d1ij , · · · , dNij
11: add the query-answer pair (qij , aij) to the list H
12: end for
13: end for
14: generate the predicted answer Ã using M given Q and H
15: return Ã

college biology) fromMassive Multitask Language Understanding (MMLU), following previous
studies.8,23 MMLU-Med serves as a testbed to show the performance of i -MedRAG on a variety
of different medical tasks.

Both MedQA and MMLU-Med are composed of multi-choice questions, whose evaluation
metric is the accuracy of predicted answers chosen from given options. For the retrieval part
in i -MedRAG, we select the Textbooks26 and Statpearlsc corpora introduced in MedRAG,23

which are shown effective on medical examination questions. MedCPT46 is chosen as the text
retriever, which has been trained on domain-specific literature. For other baselines compared,
the official settings described in their papers are used.

4.2. Main results

Table 1 shows the comparison results of i -MedRAG and other baseline approaches on MedQA
using GPT-3.5. Official scores reported in previous research are used for a fair comparison.
While methods with few-shot learning or model fine-tuning tend to perform better than the
ones in a zero-shot setting, our i -MedRAG set a state-of-the-art performance of GPT-3.5
on MedQA without any training samples or parameter tuning. Among zero-shot approaches,
i -MedRAG (69.68%) has a significant performance improvement (p < 0.05) compared to the
previous best record achieved by MedRAG (66.61%).

The results of generalizing i -MedRAG to more LLMs and data are presented in Table
2. We compare i -MedRAG with our implemented CoT and MedRAG to see if i -MedRAG

chttps://www.statpearls.com/
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Table 1. Performance of GPT-3.5 with different prompt engineering / fine-tuning methods on
MedQA. The “External Knowledge” column denotes if the method augments LLM generation with
information retrieval of external knowledge.

Method External Knowledge Setting Accuracy (%)

Chain of Thought43 No zero-shot 50.82
Knowledge Solver40 Yes zero-shot 58.40
Chain of Thought + Self Consistency39 No zero-shot 61.30
MedAgents39 No zero-shot 64.10
LLMs Augmented with Medical Textbook41 Yes zero-shot 65.00
MedRAG23 Yes zero-shot 66.61

Chain of Thought43 No five-shot 53.57
Chain of Thought + Self Consistency39 No five-shot 62.10
LLMs Augmented with Medical Textbook41 Yes fine-tuned 67.90
MedAdapter45 No fine-tuned 68.66

i-MedRAG (ours) Yes zero-shot 69.68

can bring a consistent improvement of LLM performance in medical question answering. For
all experiments with i -MedRAG, we tune the hyperparameters on a validation set of 100
samples and then report its scores on the test set. Similar to the results on GPT-3.5, the
open-source Llama-3.1-8B also shows improved performance on MedQA with the help of i -
MedRAG. While Llama-3.1-8B shows a close performance to GPT-3.5 in CoT and MedRAG
settings, its performance is significantly improved with i -MedRAG, achieving an accuracy
of 75.02%. The improved performance of GPT-3.5 and Llama-3.1-8B on MMLU-Med also
demonstrates the generalizability of i -MedRAG to more medical data. As medical questions
in MMLU-Med are less complex than the USMLE questions in MedQA, follow-up queries may
not be necessary to find relevant information for the given question. Thus, it can be observed
that the improvement by i -MedRAG compared to MedRAG is less significant in MMLU-Med
than in MedQA.

Table 2. Performance of i -MedRAG on different LLMs and datasets. “Acc.” denotes the ac-
curacy. “∆” shows the relative performance improvement compared with CoT.

Model Method
MedQA-USMLE MMLU-Med Average

Acc. ∆ Acc. ∆ Acc. ∆

GPT-3.5-Turbo CoT 65.04 +0.00% 72.91 +0.00% 68.98 +0.00%
GPT-3.5-Turbo MedRAG 66.61 +2.41% 75.48 +3.52% 71.05 +3.00%
GPT-3.5-Turbo i -MedRAG 69.68 +7.13% 75.85 +4.03% 72.77 +5.49%

Llama-3.1-8B CoT 64.73 +0.00% 77.23 +0.00% 70.98 +0.00%
Llama-3.1-8B MedRAG 66.54 +2.80% 78.05 +1.06% 72.30 +1.86%
Llama-3.1-8B i -MedRAG 73.61 +13.72% 78.42 +1.54% 76.02 +7.10%
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4.3. Scaling with iterations and queries

As we described in Section 3.3, the number of iterations to ask follow-up queries and the
number of queries generated in each iteration are the two critical hyperparameters in our
proposed iterative generation of follow-up queries. To explore how different selections of the
hyperparameter values affect the model performance, we run i -MedRAG with different settings
and compare their results. We test both GPT-3.5 and Llama-3.1-8B on MedQA and MMLU-
Med to examine if there are model-specific or task-specific patterns.

Figure 3 shows the model performance with different hyperparameter settings. Generally,
MedQA and MMLU-Med show distinct patterns in performance change with the increasing
number of iterations. While the performance of both GPT-3.5 and Llama-3.1-8B on MedQA
tends to improve with more iterations of follow-up queries, their performance on MMLU-Med
converges or starts to drop with just one or two iterations, corresponding to the different
complexities of these two tasks.

From the results on MedQA, it is also empirically shown that the number of generated
queries per iteration determines the rate of performance improvement and convergence over
multiple iterations. LLMs with more queries generated per iteration tend to have a larger
improvement in accuracy but also converge more quickly. Such a result is intuitively reasonable
as more information can be collected each iteration with more generated queries.

4.4. Case studies

Table 3 shows the predictions of GPT-3.5 on a MedQA question with different prompt engi-
neering approaches. The question asks about the mechanism of the drug for transitional cell
carcinoma of the bladder which causes hearing loss. To solve the problem, it is important to
find the exact drug and then figure out how it causes the mentioned symptoms. However, the
CoT result shows that GPT-3.5 does not inherently contain sufficient medical knowledge to
solve this problem. Instead of inferring the described drug, GPT-3.5 with CoT directly hal-
lucinates a wrong option as the answer. While free radicals are relevant to hearing loss, their
connection to the disease of the patient is unclear and not discussed. Compared to CoT which
solely relies on the internal knowledge of LLMs, MedRAG provides an opportunity for LLMs
to augment their answer generation with external medical knowledge. Nevertheless, the model
output shows that the MedRAG system fails to retrieve useful information about the drug
from medical corpora. Given the complex problem description, it is difficult for text retrievers
to find the asked mechanism without knowing the drug.

With iteratively generated follow-up queries, our i -MedRAG manages to identify the de-
scribed drug and find information about its mechanism. From Table 3, it can be observed
that GPT-3.5 starts with a general query about the asked mechanism. However, similar to
the case in MedRAG, the RAG system fails to provide useful information about the query.
With the information-seeking history, GPT-3.5 updates its actions with follow-up queries with
respect to side effects especially hearing loss. With the updated queries, it manages to identify
“cisplatin” as the drug which is not explicitly mentioned in the question. A query about the
mechanism of action of cisplatin is further proposed to search for information about the an-
swer to the original question. With several iterations of adaptive question answering, GPT-3.5
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Fig. 3. i -MedRAG performance on MedQA and MMLU-Med with different hyperparameters.

successfully finds the correct answer for the given clinical medical question.
Table 4 shows another case from the MMLU-Med dataset by Llama-3.1-8B. The case is

selected from the “professional medicine” subtask of MMLU-Med, which contains complex
clinical cases similar to those in MedQA. In the question, LLMs are asked to choose the next
step in diagnosis given the described symptoms, which requires the initial analysis of potential
diseases. Similar to GPT-3.5, the open-source Llama-3.1-8B may hallucinate wrong answers
with just CoT or MedRAG, as shown by the highlighted incorrect rationales in Table 4. With
iterative follow-up queries, i -MedRAG enables the LLM to find out the correct answer by
making specific queries given existing information. For example, Llama-3.1-8B asks about
the symptoms of Clostridium difficile infection (CDI) and diverticulitis in its first iteration
which helps it to identify diverticulitis as the potential disease for the diagnosis. In the second
iteration, the model queries about the CT scan for diverticulitis, where the answer provides
key information that helps it identify the correct next step.
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Table 3. An example of how i -MedRAG helps GPT-3.5 to find the correct answer. The incorrect
rationale and useful evidence are highlighted.

MedQA Question

0001: A 67-year-old man with transitional cell carcinoma of the bladder comes to the physician
because of a 2-day history of ringing sensation in his ear. He received this first course of neoadjuvant
chemotherapy 1 week ago. Pure tone audiometry shows a sensorineural hearing loss of 45 dB. The
expected beneficial effect of the drug that caused this patient’s symptoms is most likely due to which
of the following actions? A. Inhibition of proteasome, B. Hyperstabilization of microtubules, C.
Generation of free radicals, D. Cross-linking of DNA

CoT

Analysis: The patient is experiencing a ringing sensation in his ear, which is a symptom of tinnitus.
[...] Among the given options, the most likely mechanism of action that could cause sensorineural
hearing loss is the generation of free radicals. Free radicals can cause oxidative damage to the hair
cells and auditory nerve, leading to hearing loss. Therefore, the answer choice is C. Generation of
free radicals. Answer: C ✗

MedRAG

Retrieved documents: [...] Analysis: [...] To determine the mechanism of action of the drug
causing the symptoms, we need to identify the drug used for neoadjuvant chemotherapy. However,
the drug is not mentioned in the question stem or the provided documents. Without this informa-
tion, it is not possible to definitively determine the mechanism of action. Therefore, the answer
cannot be determined based on the given information. Answer: Cannot be determined. ✗

i-MedRAG

Query (Iteration 1): What is the mechanism of action of the neoadjuvant chemotherapy drug
used in transitional cell carcinoma of the bladder? Retrieved documents: [...]
Answer : Based on the provided documents, the mechanism of action of the neoadjuvant chemother-
apy drug used in transitional cell carcinoma of the bladder is not explicitly mentioned [...]
Query (Iteration 2): What are the potential side effects of neoadjuvant chemotherapy drugs used
in transitional cell carcinoma of the bladder? Retrieved documents: [...]
Answer : The potential side effects [...] include myelosuppression, dysuria, urinary frequency, con-
tact dermatitis, and systemic illness associated with granulomatous infections in multiple sites.
Query (Iteration 3): What is the specific neoadjuvant chemotherapy drug [...] that can cause
sensorineural hearing loss? Retrieved documents: [...]
Answer : The specific neoadjuvant chemotherapy drug used in transitional cell carcinoma of the
bladder that can cause sensorineural hearing loss is cisplatin.
Query (Iteration 4): What is the mechanism of action of cisplatin? Retrieved documents:
[...]
Answer : The mechanism of action of cisplatin is achieved through the covalent binding of platinum
to the purine bases guanine and adenine in DNA. This covalent binding leads to intra-strand and
inter-strand crosslinks causing subsequent strand breaks [...]
Final analysis: [...] The drug that is most likely responsible for the patient’s symptoms is cisplatin,
which is known to cause sensorineural hearing loss. The mechanism of action of cisplatin involves
cross-linking of DNA, leading to subsequent strand breaks and cell death. Therefore, the correct
answer is D. Answer: D ✔
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Table 4. An example of how i -MedRAG helps Llama-3.1-8B to find the correct answer. The incorrect
rationale and useful evidence are highlighted.

MMLU Question

professional medicine-020: A 52-year-old woman comes to the emergency department because
of a 1-week history of low-grade fever and increasing abdominal cramps that are exacerbated by
bowel movements [...] Her temperature is 38.1◦C (100.6◦F), pulse is 75/min, and blood pressure is
150/80 mm Hg [...] there is tenderness to palpation of the left lower quadrant with guarding but
no rebound [...] leukocyte count is 15,000/mm3 [...] Which of the following is the most appropriate
next step in diagnosis? A. Test of the stool for Clostridium difficile toxin B. Endoscopic retrograde
cholangiopancreatography C. Pelvic ultrasonography D. CT scan of the abdomen with contrast

CoT

Analysis: [...] the differential diagnosis includes diverticulitis, appendicitis, and bowel obstruction.
However, the absence of bloody stools and the patient’s response to antibiotics makes diverticulitis
less likely. Therefore, the most appropriate next step in diagnosis is to test for Clostridium difficile
toxin in the stool. Answer: A ✗

MedRAG

Retrieved documents: [...] Analysis: [...] Given the patient’s symptoms and history, the most
likely diagnosis is a pelvic abscess or a complication related to the previous surgery. The most
appropriate next step in diagnosis would be to investigate the pelvic area for any potential compli-
cations or abscesses. Answer: C ✗

i-MedRAG

Query 1 (Iteration 1): What are the common symptoms and diagnostic criteria for Clostridium
difficile infection (CDI)? Retrieved documents: [...]
Answer: [...]
Query 2 (Iteration 1): What are the typical findings on physical examination and laboratory
tests for diverticulitis? Retrieved documents: [...]
Answer: Based on the provided documents, the typical findings on physical examination and
laboratory tests for diverticulitis are: Physical Examination: Tenderness to palpation over the area
of inflammation (almost always present) [...] Fever is almost always present, but hypotension and
shock are uncommon. Laboratory Tests: Leukocytosis (elevated white blood cell count) [...]
Query 1 (Iteration 2): What are the typical imaging findings for diverticulitis on a CT scan of
the abdomen with contrast? Retrieved documents: [...]
Answer: [...] These findings are consistent with the diagnosis of diverticulitis, and are often used
to differentiate it from other conditions that may present with similar symptoms.
Query 2 (Iteration 2): What are the indications for surgical intervention in a patient with
diverticulitis? Retrieved documents: [...]
Answer: [...]
Final Analysis: [...] The patient’s laboratory results show a leukocyte count of 15,000/mm3,
indicating leukocytosis [...] The patient’s symptoms of abdominal cramps, fever, and leukocytosis,
combined with tenderness to palpation of the left lower quadrant, are consistent with diverticulitis
[...] the most appropriate next step in diagnosis is to perform a CT scan of the abdomen with
contrast to evaluate for diverticulitis and rule out other causes of her symptoms. Answer: D ✔
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5. Discussion

Overall, our proposed i -MedRAG effectively improves the performance of LLMs on complex
medical questions by prompting them to iteratively ask follow-up queries. The experimental
results show that our approach is better than previously proposed prompt engineering and
fine-tuning methods, and is generalizable to various LLMs and medical question-answering
datasets. Nevertheless, our approach has certain limitations which need to be discussed. It
is also worthwhile to discuss the future work of this study to analyze how it can be further
improved to facilitate real-world medical assistance.

5.1. Limitations

The first limitation of i -MedRAG is its high cost. While generating more follow-up queries
tends to provide LLMs with more comprehensive and focused information about the given
medical question, the cost also grows linearly with the number of queries generated. The time
cost can be further increased if more documents are used to help answer the generated queries
with RAG. While the cost is comparable to approaches using multiple LLM agents39 or self
consistency47 which also prompt LLMs multiple times for each question, it is much more costly
than baseline prompting methods such as CoT.37

Another limitation is the selection of hyperparameter values for optimal performance. As
shown in Figure 3, different LLMs can have different hyperparameter settings for their optimal
performance. Even for the same LLM, its optimal hyperparameters can vary based on the
medical questions being processed. Thus, it is non-trivial to find the optimal hyperparameters
of i -MedRAG for a new medical task, which may be inefficient for real-world deployments.

5.2. Future work

Given the limitations of i -MedRAG, we consider several potential future directions that could
further improve the performance of retrieval-augmented generation for medicine. The first
direction is the automation of hyperparameter selection in i -MedRAG. To reduce the laborious
process of hyperparameter selection, one may use an LLM agent to dynamically determine
how many follow-up queries should be asked each iteration. This can improve the efficiency
and flexibility of the hyperparameter selection process. Another future direction is to improve
the performance of i -MedRAG with few-shot demonstrations. While few-shot CoT prompting
is demonstrated to perform better than the zero-shot counterpart,43 it is not easy to adapt
such strategies to i -MedRAG as the reasoning process can be dynamically affected by the
use of external corpora and retrievers. Investigating how i -MedRAG can benefit from one or
few-shot samples could be a potential direction to further enhance its performance on medical
question answering. More quantitative analysis can also be performed to examine the error
types of i -MedRAG compared to existing methods.
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