
Finite H-Systems with 3 Test Tubes are not Predictable

Lutz Priese

Computer Science Department, University of Koblenz, Germany,

priese@uni-koblenz.de

Yurii Rogojine

Academy of Sciences of Moldova, Kishinev, Moldova,

rogozhin@cc.acad.md

Maurice Margenstern

Institut Universitaire de Technologie, Metz, France,

margens@iut.univ-metz.fr

Finite H-systems with n test tubes are splicing systems of n test tubes over a
common molecular alphabet, �, with a �lter Fi � � for each test tube. Initially,

arbitrary many copies of molecules and enzymes (splicing rules) from a �nite set
of molecules and enzymes are given to the test tubes that produce new molecules

by splicing and �ltering. It is known that any formal language can be generated
by a �nite H-system with 9 test tubes and that the results of �nite H-systems with

6 test tubes are unpredictable. Here we present a rather simple proof that the
results of �nite H-systems with only 3 test tubes are unpredictable and that 4 test
tubes su�ces to generate any formal language.

1 Introduction

Molecular computers have been attracting many people from chemistry, biol-

ogy and computer science. A major break through was a concrete molecular

computer by Adleman1 that could solve instances of the travelling-salesman-

problem from OR. In a remarkable paper Head5 draw the connections between

molecular computers and formal language theory. Head presented molecules as

words over some alphabet and enzymes as so-called splicing rules. A splicing

rule may be applicable to two molecules. It breaks both molecules at �xed

locations, de�ned by the splicing rule, and recombines the initial string of one

broken molecule with the �nal string of the second. Head's smooth connection

to formal language theory brought this �eld to the attention of many people

from formal language theory. E.g., P�aun, Rozenberg and Salomaa6 asked what

classes of formal languages are derivable by molecular computers where initial

molecules and enzymes from certain classes in formal language theory. One

of such results says that any regular language is derivable from �nitely many

initial molecules with �nitely many splicing rules. Csuhaj-Varj�u, Kari, P�aun3

modi�ed Head's concept slightly to systems of n test tubes. Here, any test

tube is an H-system with an additional �lter. In a single macro-step any test

tube generates new molecules according to its set of starting molecules and its

set of splicing rules. Afterwards, the outcome of all test tubes is poured into

the �lters of all test tubes. Those molecules that may pass the �lter of test

tubes i; 1 � i � n, form the new starting molecules for the i-th test tube for

the next macro-step.

This new process, �ltering results of one test tube into another, increases

the computational capability of molecular computers. Let us call a system of n

test tubes �nite if initially any test tube contains (arbitrarily many) copies of

molecules from a �nite set of molecules and possesses only �nitely many splic-

ing rules. It is known6;1 that a �nite 1-test-tube-system generates only regular

sets of molecules. However, �nite 2-test-tube-system may generate more com-

plicated non-regular sets 3. Ferretti, Mauri, Zandron4 have shown that any

recursively enumerable (r.e.) set of molecules is derivable in a �nite 9-test-

tube-system (or in a �nite 6-test-tube-system if one allows for a rather simple

encoding of the molecules to be generated). These results have implications

for molecular computers as r.e. languages have many undecidable properties.

E.g., the membership problem is in general not decidable for r.e. languages.

This means that there exists no algorithm A which can tell, when presenting a

word w and an r.e. languages L to A, whether w belongs to L or not. Further,

there is a �xed language, U , such there exists no algorithms A which can tell,

when presenting a word w to A, whether w is an element of U or not. Thus, a

trivial consequence of the result of4 is that there exists no algorithmwhich can

compute which molecules may be generated in a �nite 6-test-tube-system. I.e.,

the results of a �nite 6-test-tube-system cannot be algorithmically predicted

in general. We will sharpen this result here by showing how to generate any

r.e. language in a �nite 3-test-tube-system. Thus, there is no way to predict

the outcome of the reactions of only three test tubes starting with molecules

and enzymes from �nite set of molecules and enzymes.

2 Notations and Basic Concept

We use the following standard notations from formal language theory.

An alphabet is a �nite, non-empty set whose elements are also called letters.
A word (over some alphabet �) is a �nite (possibly empty) concatenation of

occurrences of letters (from �). The empty concatenation of letters is also

called the empty word and is denoted by ". �� denotes the set of all words

over �. A language (over �) is a set of words (over �).

A formal grammar G is a tuple G = (N; T;R; S) of an alphabet N of so-

called non-terminal letters, an alphabet T of so-called terminal letters, with

N \ T = ;, an initial letter S from N , and a �nite set R of rules of the form
u ! � with u; � 2 (N [T)�. Any rule u ! � 2 R is a substitution rule

allowing to substitute any occurrence of u in some word w by �.

Formally, we write w)G w0 if there exist a rule u ! � in R and words

w1; w2 2 (N [T)� with w = w1uw2 and w0 = w1�w2.)�
G denotes the

reexive and transitive closure of). I.e., w)�
G w0 means that there exists

an integer n and words w1; � � � ; wn with w = w1; w
0 = wn and wi)G wi+1 for

all i; 1 � i < n. n = 1 is allowed, thus w)�
G w holds always. We often drop

the index G and write) instead of)G if G is clear from the context or not

important.

The sequence w1) w2) � � �) wn is also called a computation (from

w1 to wn of length n � 1), or similar. A terminal word is a word in T �; all

terminal words computable from the initial letter S form the language L(G)

generated by G. More formally, L(G) := fw 2 T �; S)� wg. A language

L is called recursively enumerable, or simply r.e., if there exists some Turing

machine generating L. It is a fundamental result of computer science that

a language L is r.e. if and only if there exists some formal grammar G with

L = L(G).

An (abstract) molecule is in this paper simply a word over some alphabet.

An abstract enzyme, or splicing rule, is a quadruple (u1; u2; u
0
1; u

0
2) of words,

which is often written in a two dimensional way as
u1 u2
u01 u02

.

A splicing rule r = (u1; u2; u
0
1; u

0
2) is applicable to two molecules m1;m2

if there are words w1; w2; w
0
1; w

0
2 with m1 = w1u1u2w2 and m2 = w0

1u
0
1u

0
2w

0
2,

and produces two new molecules m0
1 = w1u1u

0
2w

0
2 and m0

2 = w0
1u

0
1u2w2. In

this case, we also write fm1;m2g `r fm
0
1;m

0
2g. We also write w `r w

0 if there

exist w1 and w
0
1 with fw;w1g `r fw

0; w0
1g.

A Head-splicing-system, or H-system, is a triple H = (�;M;E) of an

alphabet �, a set M � �� of initial molecules over �, and a set E � �� �
�� � �� � �� of splicing rules. H is called �nite if M and E are �nite sets.

For any set L � �� of molecules we denote by �H (L) := fw 2 ��; 9w1; w2 2
L : 9w0 2 �� : 9r 2 E : fw1; w2g `r fw;w

0gg the set of all molecules derivable

from L by one application of a splicing rule. Further, �0H(L) := L, �i+1H (L) :=

�iH(L) [�H(�
i
H(L)), �

�
H (L) :=

S
i�0 �

i
H(L), �(H) := ��H(M).

Thus, �(H) is the set of all molecules that can be generated in H starting

with M as initial molecules by iteratively applying splicing rules to copies of

the molecules already generated.

A test tube T is a tuple T = (H;F) of an H-system H = (�;M;E) and an

alphabet F � �, called the �lter for T or H.

An H-system with n test tubes, or simply an n-tt, H, is a tuple H =

(�; T1; � � � ; Tn) of an alphabet � and n test tubes Ti = ((�;Mi; Ei); Fi), 1 �
i � n.

For languages Li; L
0
i; 1 � i � n, over � one writes (L1; � � � ; Ln) `H

(L01; � � � ; L
0
n) if

L0i =
Sn

j=1

�
��Tj (Lj) \ F

�
i

�
[
�
��Ti(Li) \

�
�� �

Sn

j=1F
�
j

��

holds for 1 � i � n.

I.e., to get L0i one generates all results �
�
Tj
(Lj) of allH-systems Tj starting

with Lj as initial molecules and puts all those results ��Tj (Lj) into L
0
i that pass

the �lter Fi. In addition, one keeps in L0i all those molecules produced in Ti
from Li(i.e., �

�
Ti
(Li)) that cannot pass any �lter Fj into a further H-system

Tj .

Again, `�H denotes the reexive and transitive closure of `H .

The result �(H) of H is all the possible contents of its �rst test tube. More

formally,

�(H) := fL1 � ��; 9L2; � � � ; Ln � ��: (M1; � � � ;Mn) `
�
H (L1; � � � ; Ln)g

are all molecules derivable in the �rst test tube T1 if one starts with the initial

molecules Mi in Ti, 1 � i � n.

An extended n-tt H is a tuple H = (�; T1; � � � ; Tn;�) of an n-tt (�; T1; � � � ;
Tn) and a terminal alphabet � � �. The result �(H) of an extended n-tt is
de�ned as �(H) := �((�; T1; � � � ; Tn)) \ ��, the set of all molecules over ��

derivable in the �rst test tube.

3 An Example

A grammar G = (N; T;R; S) is called right-linear if all of its rules u ! � in

R are of the form x ! ay, x ! a or x ! � with x; y 2 N and a 2 T . Thus,

any computation has the form S) a1x1) a1a2x2) � � �) a1a2 � � �anxn)
a1a2 � � �an(+1) with some ai 2 T , xi 2 N .

A language L is called regular if there exists a right-linear grammar G

that generates L, i.e. L = L(G). Obviously, regular languages are generated

by computations of a very special form: there is never a substitution within a

word but only at the right end of words. But such a \substitution at the right

end" is easily expressed as a splicing: wx)G way is the result of breaking wx

and a special word Zay before x and a, respectively, and recombining them

into way and Zx.

Thus, the right-linear rule x! ay becomes the splicing rule
" x

Z ay
.

The following right-linear grammarG0 generates all words over fa; bg with
an even number of occurrences of the letter a and a number of occurrences of

the letter b that can be divided by 3 : G0 = (N0; T0; R0; S) with

- N0 := fS; x0;0; x0;1; x0;2; x1;0; x1;1; x1;2g,

- T0 := fa; bg

- R0 is given by the rules

S ! " x0;0 ! ax1;0 x0;2 ! ax1;2 x1;1 ! ax0;1
S ! ax1;0 x0;0 ! bx0;1 x0;2 ! bx0;0 x1;1 ! bx1;2
S ! bx0;1 x0;1 ! ax1;1 x1;0 ! ax0;0 x1;2 ! ax0;2
x0;0 ! " x0;1 ! bx0;2 x1;0 ! bx1;1 x1;2 ! bx1;0

An example of a computation in G0 is

S) ax1;0) abx1;1) abbx1;2) abbax0;2) abbabx0;0) abbab.

Obviously, this can easily be simulated by splicings. We regard the H-

system H = (�;M;E) with

{ � := N [T [fZg, with a new letter Z =2 N [T ,
{ M := fS; ZZg [fZaxi;j; 0 � i � 1, 0 � j � 2g

[fZbxi;j; 0 � i � 1, 0 � j � 2g,
{ E is the following list of splicing rules

" S
1 :

ZZ "

" S
2 :

Z ax1;0

" S
3 :

Z bx0;1

" x0;04 :
ZZ "

" x0;05 :
Z ax1;0

" x0;06 :
Z bx0;1

" x0;17 :
Z ax1;1

" x0;18 :
Z bx0;2

" x0;29 :
Z ax1;2

" x0;210 :
Z bx0;0

" x1;011 :
Z ax0;0

" x1;012 :
Z bx1;1

" x1;113 :
Z ax0;1

" x1;114 :
Z bx1;2

" x1;215 :
Z ax0;2

" x1;216 :
Z bx1;0

One now easily simulates any computation of G0. Let us regard the above

example. How to simulate S) ax1;0? In H we have the molecules S and

Zax1;0 and can apply splicing rule 2 to get fS; Zax1;0g `2 fZS; ax1;0g, re-
sulting in the new wanted molecule ax1;0 plus some garbage ZS. We may

continue to apply splicing rule 12 to the two molecules ax1;0 and Zbx1;1 to

get fax1;0; Zbx1;1g `12 fZx1;0; abx1;1g with abx1;1 plus some garbage Zx1;0.

One easily checks that S `2 ax1;0 `12 abx1;1 `14 abbx1;2 `15 abbax0;2 `10
abbabx0;0 `4 abbab is a possible chain of reactions in H. The role of Z is to

handle the garbage, some unwanted results. Suppose we operate without Z.

Thus, rule 10 would have the form
" x0;2
" bx0;0

. We might apply this rule 10'

to abbabx0;0 and the garbage x0;2 (instead of Zx0;2) resulting in a `backward'

computation fabbabx0;0; x0;2g `100 fabbax0;2; bx0;0g.

Those `backward' computations are harmless for G0, as G0 has a so-called

reversibility property (G0 is \backward deterministic"). However, in general

backward computations lead to disaster and are therefore eliminated by the

help of the special symbol Z. (It might be mentioned that Bennett2 has shown

how to simulate any deterministic Turing machine by one which is additionally

backward deterministic. But such a discussion on `reversible' computations

would leave the scope of this paper.)

With the technique of the example one easily proves that any regular

language is the result of an extended 1-tt; more results on this subject are

found in 6.

4 3-TT Simulate any Grammar

In contrast to right-linear grammars a rule u! � of a formal grammar de�nes

in general a substitution inside a word; w1uw2) w1�w2. Whilst splicing

rules trivially simulate the rules of right-linear grammars they cannot directly

simulate a general substitution. In 4 and 3 a method is introduced to rotate

words w1uw2 into w2w1u and apply the substitution solely at the end of a

word, just as it is done in right-linear grammars. A further letter, B, marks the

correct beginning of a word. Thus, w2Bw1u is a rotated version of Bw1uw2.

For technical reasons, two further letters, X;Y are required that mark the

�rst and �nal letter of all rotated words. Thus, a representation of a word

w 2 (N [T)� is any word of the form Xw2Bw1Y with X;B; Y =2 N [T and

w = w1w2. For any grammar G = (N; T;R; S) we shall now design a 3-tt such
that for any word w 2 (N [T)� with S)�

G w one �nds all representations

Xw2Bw1Y of w in test tube 1. Here, we follow quite closely the ideas in 4

and3. A rule u! � fromR applicable to w1uw2 is simulated by a splicing rule
" uY

Z �Y
applicable to the representation Xw2Bw1uY of w1uw2. To ensure

that all representations of a derivable word w from S in G are found in test

tube 1 we have to rotate the words between X and Y . This is done with

the help of two more test tubes, 2 and 3, and an encoding of the letters in

N [T [fBg. Let N [T [fBg = fl1; � � � ; lng. We encode li as ��
i�, where

�i is a sequence of i ocurrences of �. � and � are new letters. A splicing rule
" liY

Z ��i�Y
encodes the �nal letter li before Y into ��i�. If the new �nal

letter before Y is � (or �), we change Y into Y� (or Y�) and delete this � (or

�). No further reactions with the letter Y� and Y� are possible in test tube 1.

Words with a letter Y� (or Y�) may pass only the �lter of test tube 2 (or

test tube 3), where a new letter � (or �) is added as �rst letter behind X.

If a complete encoding ��i� is thus transformed from the end of a word to

the beginning (behind X), a further splicing rule decodes ��i� back into li:

X��i� "

Xli Z
.

Thus, we associate with any formal grammar G = (N; T;R; S) the follow-

ing 3-tt, HG:

HG = (�; T1; T2; T3) with

{ � = N [T [fB;X; Y; �; �;X 0; Y�; Y�g

{ T1 = (M1; E1; F1) with

F1 = N [T [fB;X; Y; �; �g

M1 = fXSBY;XBSY;ZY� ; ZY�; X
0Zg [fZ��i�Y ; 1 � i � ng [

fZ�Y ; 9u : u! � 2 Rg [fXliZ; 1 � i � ng
where N [T [fBg = fl1; � � � ; lng, and

E1 consists of the following splicing rules,

1:
" uY

Z �Y
for u! � 2 R,

" liY2 :
Z ��i�Y

, 1 � i � n,

3:
" �Y

Z Y�
,

" �Y
4 :

Z Y�
,

X "
5 :

X0 Z
,

6:
X��i� "

Xli Z
, 1 � i � n,

{ T2 = (M2; E2; F2) with

F2 = N [T [fB;�; �;X 0; Y�g,

M2 = fZY;X�Zg, and

E2 consists of the following splicing rules:

7:
" Y�
Z Y

,
X0 "

8 :
X� Z

,

{ T3 = (M3; E3; F3) with

F3 = N [T [fB;�; �;X 0; Y�g,

M3 = fZY;X�Zg, and

E3 consists of

9:
" Y�
Z Y

,
X0 "

10 :
X� Z

.

Suppose S)�
G w1uw2)G w1�w2 holds with u ! � 2 R. In test tube 1

we have XBSY as a molecule inM1. Suppose that we have already generated

all representations of w1uw2 in test tube 1. Thus, also Xw2Bw1uY is in test

tube 1 and the following chain of reactions is valid:

test tube 1:

fXw2Bw1uY; Z�Y g `1 fXw2Bw1�Y; ZuY g,
let � = �0li for some �0; li; so we continue

fXw2Bw1�
0liY; Z��

i�Y g `2 fXw2Bw1�
0��i�Y; ZliY g,

fXw2Bw1�
0��i�Y; ZY�g `3 fXw2Bw1�

0��iY�; Z�Y g
fXw2Bw1�

0��iY� ; X
0Zg `5 fX

0w2Bw1�
0��iY�; XZg

test tube 2:

fX0w2Bw1�
0��iY� ; ZY g `7 fX

0w2Bw1�
0��iY; ZY�g

fX0w2Bw1�
0��iY;X�Zg `8 fX�w2Bw1�

0��iY;X0Zg
test tube 1:

fX�w2Bw1�
0��i�1�Y;ZY�g `4 fX�w2Bw1�

0��i�1Y�; Z�Y g
fX�w2Bw1�

0��i�1Y�; X
0Zg `5 fX

0�w2Bw1�
0��i�1Y�; XZg

test tube 3:

fX0�w2Bw1�
0��i�1Y�; ZY g `9 fX

0�w2Bw1�
0��i�1Y; ZY�g

fX0�w2Bw1�
0��i�1Y;X�Zg `10 fX��w2Bw1�

0��i�1Y;X0Zg
Continuing this way, we �nally get X��i�w2Bw1�

0Y in test tube 1, re-

sulting in fX��i�w2Bw1�
0Y;XliZg `6 fXliw2Bw1�

0Y;X��i�Zg, where the
�nal letter li before Y is now rotated to be the �rst letter behind X. Using

the same technique, we easily get any representation of w1�w2 in test tube

1. We also can describe the results of all three test tubes as follows. Let

c : fl1; � � � ; lng
� ! 2fl1;���;ln;�;�g

�

{ here 2M denotes the set of all subsets

of M { be de�ned by c(li) := fli; ��
i�g and c(w1w2) := c(w1)c(w2). I.e.,

l2�����l1��� 2 c(l2l3l1l1). Further, � : fl1; � � � ; ln; �; �g
� ! 2fl1;���;ln;�;�g

�

is de�ned by w2w1 2 �(w) if and only if w = w1w2, for some w1; w2, and

~c := � � c. I.e., ��l1���l2��� 2 ~c(l2l3l1l1). De�ne

C1 : = fAu
; A 2 fX;X0g & ((
 = Y & 9w : u 2 ~c(Bw) & S)� w)_
(
 = Y� & 9w : u� 2 ~c(Bw) & S)� w) _ (
 = Y� & 9w : u� 2 ~c(Bw)

& S)� w))g,

C2 : = fAu
; A 2 fX0; X�g &
 2 fY; Y�g & 9w : u� 2 ~c(Bw) & S)� wg,

C3 : = fAu
; A 2 fX0; X�g &
 2 fY; Y�g & 9w : u� 2 ~c(Bw) & S)� wg.

Further

G1 : = fZuY ; 9v : u ! v 2 R _ v ! u 2 Rg [fZ��i�Y , X��i�Z, ZliY ,
XliZ; 1 � i � ng [fZ�Y , ZY�, Z�Y , ZY� XZ, X0Zg,

G2 : = fZY , ZY� , X�Z, X
0Zg, and

G3 : = fZY , ZY�, X�Z, X
0Zg.

Then one easily proofs that the result �i in test tube i is exactly Ci [Gi,

1 � i � 3. Here, Gi denotes the \garbage" and Ci the wanted contents.

To prove �i � Ci [Gi one proceeds as above: for any word in Ci [Gi one

inductively �nds a chain of reactions producing this word. For \�" one simply

notes that an application of a splicing rule in test tube i to two words from

Ci [Gi again results in two words in Ci [Gi. Thus, if we regard only the

`uncoded' words { i.e., c(li) = li { we have already shown:

Theorem 1 For any words w1, w2 2 (N [T)� there holds: HG can produce
Xw2Bw1Y in test tube 1 if and only if S)�

G w1w2 holds.
We say that a class C of n-tts is predictable if there exists an algorithm A

which tells, given some n-tt H from C and some word w over the alphabet �

of H as inputs to A, whether w can be generated in the �rst test tube of H

or not. Suppose now that the class of all 3-tts is predictable. Then we could

decide the membership problem of any grammar: Given G = (N; T;R; S) and

w 2 T �, consider HG and XBwY . Test with the help of A if HG can produce

XBwY in test tube 1. If yes, than S)�
G w holds, if not, than S)�

G w is false.

As the membership problem for general formal grammars is undecidable, we

conclude:

Corollary: Finite H-splicing-systems with 3 test tubes are not predictable.

5 Extended 3-tt Can Generate Any `Pure' Formal Language

An extended n-tt (H;�) generates a given language L if L = �(H) \ �� holds.

Let G be a formal grammar, L = L(G), then �(HG) \ �� 6= L for our 3-tt HG

from the previous chapter. We `only' proved that XBwY 2 �(HG) for w 2 T �

if and only if w 2 L(G). To produce the `pure' words w 2 L(G) in test tube

1 one may use an extended 3-tt, H0
G, with T as the terminal alphabet (i.e.

H0
G = (HG; T)) and try to get rid of the symbols X, B, and Y . A standard

idea from formal language theory is to produce words XBwY with w 2 T � or

w 2 �� and simply guess that w 2 T � may hold. Now one guesses to drop XB

and Y and results with the pure terminal words. One might try and introduce

two new splicing rules for test tube 1:
XB "

10 :
" ZZ

and
" Y

20 :
ZZ "

.

However, this would lead to chaos as is seen as follows. Suppose we have

generated XBwY with w 2 T �, thus w 2 L. Applying 10 to XBwY results in

wY . We now may use the rules of all three test tubes to delete the �nal letters

of w before Y without producing them (in a rotated form) in front behind X

(as there is no more X). Thus, we could derive any w0Y with w = w00w0 for

some w0. By rule 20 we can produce also w0, although this su�x w0 of w does

not have to belong to L (G).

However, we still may follow the idea to guess an end of reactions and to

drop XB and Y . But this has to be done with a more involved method where

Y can only be dropped after Y `has told X to do the same'.

When we guess to drop XB and Y we �rst transform Y into ��Y , where

 is a new letter. �� are now rotated to the beginning, as before. Thus, we

get XBwY ` XBw��Y `� X0��BwY . As is new, there is no rule for Y

in HG. We simply drop Y . However, X0��Bw now may enter test tubes 2

and 3 and new letters �, � may be produced after X. Fortunately, this leads

only to further garbage not in T � as we will drop X and B only together in

the form of X��B by a rule
X��B "

" ZZ
. Note, �� encodes no letter li,

only ��i� with i > 0 encodes a letter. X��B is thus a unique message for X

to become deleted.

Let G = (N; T;R; S) be any formal grammar. H0
G denotes the extended

3-tt H0
G = (�; T 0

1; T
0
2; T

0
3;�) with

{ � = T ,

{ � = N [T [fB;X;X0; Y; �; �; ; Y�; Y�g,

{ T 0
1 = (M 0

1; E
0
1; F

0
1) with

F 0
1 = N [T [fB;X; Y; �; �; g,

M 0
1 = fXSBY;XBSY;ZY� ; ZY� ; X

0Z;ZZg[fZ��i�Y ; 1 � i �
ng[fZ�Y ; 9u : u! � 2 Rg[fXliZ; 1 � i � ng,
where N [T [fBg = fl1; � � � ; lng,
E1 consists of the following splicing rules:

1:
" uY

Z �Y
, for u! � 2 R,

" liY2 :
Z ��i�Y

, 1 � i � n,

3:
" �Y

Z Y�
,

" �Y
4 :

Z Y�
,

X "
5 :

X0 Z
,

6:
X��i� "

Xli Z
, 1 � i � n,

7:
" Y

Z ��Y
,

" Y
8 :

ZZ "
,

X��B "
9 :

" ZZ

{ T 0
2 = (M 0

2; E
0
2; F

0
2) with

F 0
2 = V [T [fB;�; �; ;X 0; Y�g,

M 0
2 = fZY;X�Zg,

and E0
2 consists of

" Y�10 :
Z Y

,
X0 "

11 :
X� Z

{ T 0
3 = (M 0

3; E
0
3; F

0
3) with

F 0
3 = V [T [fB;�; �; ;X 0; Y�g,

M 0
3 = fZY;X�Zg,

and E0
3 consists of

" Y�12 :
Z Y

,
X0 "

13 :
X� Z

Now, using a proof as for theorem 1 with slightly more complicated sets

Ci; Gi; 1 � i � 3, one easily gets: For w 2 T �:

w 2 �(H0
G) if and only if XBwY 2 �(HG) if and only if w 2 L(G).

Thus, L(G) = �(H0
G). This proves:

Theorem 2 Any r.e. language can be generated by an extended 3-tt.
Extended n-tts (�; T1; � � � ; Tn;�) possess a terminal alphabet, �. This can

be dropped in H0
G if we use a further test tube T0 with T0 = (;; ;; T). T0 �lters

all words over the terminal alphabet T . As a trivial consequence we know:

Corollary: Any r.e. language can be generated by a 4-tt.

6 Summary

We presented a rather simple proof that any r.e. language is generated by

a �nite 4-test-tube-system or by a �nite extended 3-test-tube-system. Fur-

ther, there exists no algorithm that predictes the outcome of �nite 3-test-tube-

system. This question is still open for �nite 2-test-tube-systems.

Acknowledgments

Several fundings created the conditions of a fruitfull collaboration between the

three authors, which made them possible to do this joint work. In this respect,

the �rst and third authors thank the Institut Universitaire de Technologie of

Metz, and the second and third authors thank both the French Ministery for

Education, Universities and Research and again the Institut Universitaire de
Technologie of Metz.

1. L. M. AdlemanMolecular computation of solutions of combinatorial prob-
lems, Science, 226, pp. 1021-1024, 1994.

2. C.H. Bennett, Logical Reversibility of Computation, IBM J. Res. De-

velop. 6, pp. 525{532, 1973.

3. E. Csuhaj-Varj�u, L. Kari, G. P�aun, Test Tube distributed system based
on splicing, Computer and AI, 2{3, pp. 211-232, 1996.

4. C. Ferretti, G. Mauri, C. Zandron Nine Test Tubes Generate any RE
Language, personal communication.

5. T. Head Formal Language Theory and DNA: An Analysis of the Gen-
erative Capacity of Speci�c Recombinant Behaviors, Bulletin of Mathe-

matical Biology, Vol. 49, No. 6, pp. 737-759, 1987.

6. G. P�aun, G. Rozenberg, A. Saloma Computing by splicing, TCS 168, pp.

321{336, 1996.

