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The combination of a wealth of structural data and impressive computational
power provides detailed information pertaining to the structure and dynamics of
biomacromolecules. A natural inclination is to incorporate this information into
models to gain added predictive power on protein folding and stability. There has
been considerable recent interest in developing ”knowledge-based” potentials to
describe internal interactions in proteins. In these approaches, probability distri-
bution functions are inferred from existing knowledge. A common assumption has
been the “quasi-chemical approximation” or “Boltzmann device”. This method
relates statistical mechanical probabilities to observed frequencies. The validity
of this approach is discussed in detail from a statistical mechanics perspective.
Because statistical mechanics is a form of statistical inference based on a lack of
knowledge of the system, the “Boltzmann device” does not have a rigorous theo-
retical justification. In the present work, a statistical mechanics based on partial
knowledge of the system is employed. This statistical mechanical scheme uses the
minimum description length (MDL) of phase space as its main tool. With this
approach, “knowledge-based” potentials can be derived in a rigorous fashion. In
practical calculations, these potentials are best obtained using Bayesian inference
methods similar to those used in image reconstruction.

1 Introduction: The Problem with the Boltzmann Device

One of the “holy grails” of biochemistry is to find the algorithm that allows a
protein’s three-dimensional structure to be predicted from its sequence. The
solution of this form of the protein folding problem requires an accurate rep-
resentation of protein potentials. These intermolecular potentials must not
only account for the interactions between amino acids within a protein but
also must consider solvation effects. To this end, a plethora of techniques
have arisen. These techniques fall into two broad categories. The first tries
to calculate the interaction potentials either directly from high level quantum
calculations or indirectly from empirical force fields derived from direct cal-
culations. An alternate approach is to use the large database of structural
information to infer potentials. Potentials derived in this manner are often
referred to as “statistical potentials” or “knowledge-based potentials”. Essen-
tially, one is using the structural knowledge in an existing database to deduce
a potential.

The Boltzmann device is central to the computation of statistical poten-



Pacific Symposium on Biocomputing 4:266-277 (1999)

tials. It has been observed that the frequency of occurrence of certain struc-
tural features found in the diverse database of proteins follows the following
empirical law:

Frequency = exp{—E/RT}. (1)

where E is the energy associated with the structural feature, R is the gas
constant and T is the “conformational temperature”. This law is, of course,
the familiar form of the Boltzmann distribution. This distribution has been
observed for a number of protein substructures and motifs. These include
frequencies of cis-trans isomerization of prolines, distributions of ®-¥ dihe-
dral angles, of charged residues, and of sizes of empty cavities. Additionally,
residue stabilization of secondary structure follows a Boltzmann law (see ! and
reference therein). Although this phenomenology suggests that conventional
Boltzmann statistics is obeyed, early on this result was disputed 2. Despite
concerns regarding the origin of 1, it has been proposed that the Boltzmann
law can serve as a rigorous starting point for connecting observed structural
frequencies to potential functions 3.

As an example of how the Boltzmann device is used, the calculation of an
intermolecular potential for alanine-alanine interactions in a protein is consid-
ered (cf. ). For knowledge-based methods, some protein database would be
examined and the distance, r, between all alanine pairs in all different proteins
is measured. The distance scale is discretized, so that the number of pairs
within a given range or bin can be counted. It is then assumed that the fre-
quency, faa (r), of occurrence of alanine pairs at a fixed distance, r, follows

the law: ) Eaa ()
= 2 expaam)
with the “partition function” defined as:
. EAA (7")
Z = Zexp[—T] (3)

where the sum is over all discretized distances. The goal is to back calculate
FE 44 from the frequencies.

There are a number of immediate problems with this calculation and these
have been circumvented in various ways. The most obvious one is the value
to be assigned to the temperature. Often this is taken as room temperature.
However, the “temperature” observed when examining protein substructures
has been quite variable and has ranged from 150-600 K°. The physical signif-
icance of this remains obscure. In some applications the temperature is not of
great concern because it is a constant multiplicative factor.



Pacific Symposium on Biocomputing 4:266-277 (1999)

A second, related problem is what reference state should be assumed.
Choice of a reference distance frequency, f(r), yields a net pair potential given
by:

AE‘AA = EAA - Ereferencepair (4)

This net potential is than determined from:

AEu4(r) = —RTn <f’;“z7f;)> +1n (Zi) (5)

One possible choice of reference frequencies is to use distances from all amino
acid pairs in the database. However, it is unclear how to make an optimal
choice of reference states. With an ideal choice, the term In (Z/Z,.¢) will be
small and the net potential can be determined directly from frequency ratio,
an observable quantity. The choice of the reference state remains one of the
more difficult issues with this approach ® and requires good physical intuition
for the specific system under consideration.

Despite these criticisms and concerns, knowledge-based potentials have
met with modest success (cf. 46). Although knowledge-based potentials have
improved considerably over the years, there still is the underlying problem
of the validity of the Boltzmann device. Thomas and Dill have examined
the residue-residue distance dependence for a protein lattice model 7. They
found that systematic errors arose in the derived potentials as a result of
excluded volume effects and that a Boltzmann dependence is not followed.
It is uncertain whether a correct treatment of excluded volume effects will
re-instate the Boltzmann device. At this stage the entire approach must be
viewed as empirical and, regardless of the level of success, is without a rigorous
theoretical underpinning.

In the present work, the validity of the Boltzmann device is examined
and an alternative approach is proposed. Section II discusses the “ensemble”
used to define protein potentials. It is seen that a databank of different
protein structures cannot be described by any of the traditional statistical
mechanical ensembles. Consequently, one cannot a priori assume any specific
form for the distribution law. In Section III, the connection between MDL
and statistical mechanics is discussed. Not only can statistical mechanics be
recast as a Bayesian inference model based on MDL, but this formulation can
also be used to extend the applicability of statistical mechanics to microstates
and to knowledge-based systems. In Section IV, a derivation of knowledge-
based protein potentials is presented that is based on this statistical mechanical
model.
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2 The Statistical Mechanics of Protein Potentials

To recognize the formal problems associated with using the Boltzmann device,
it is important to focus on the nature of the “ensemble” from which the statis-
tics are derived. Protein structures determined from NMR and from X-ray
crystallography are canonical ensemble-averaged structures that follow a Boltz-
mann law. In knowledge-based methods, one is not observing members of this
ensemble. Rather a collection of many different ensemble-averaged species is
considered. Unlike the ensembles of statistical mechanics, one now has differ-
ent species in each partition. These database structures are independent and
do not interact with each other. Thus, they represent an isolated system simi-
lar to a microcanonical ensemble. Some authors have used the term, a protein
“zoo” and this is entirely appropriate. Each partition has a different species
that in a sense is fenced off (no interactions) with all other species. The zoo
is not entirely like a microcanonical ensemble because the microstate in one
partition could never be duplicated in the next one. Also, even though they
are isolated, each partition will not be at constant energy. So the question is:
Where lies the statistical mechanics of the protein zoo?

The protein zoo is clearly not a canonical ensemble. Its members are
not at constant temperature and are not capable of exchanging energy. It is
also not a microcanonical ensemble because the partitions are not at constant
energy. One can, however, come close to approximating it as a microcanonical
ensemble. If the number of proteins in each partition is appropriately adjusted,
a constant number of amino acids in a partition can be achieved. To a first
approximation the system’s energy will be dominated by covalent interactions
and these interactions will be fairly sequence independent. Consequently, each
partition with a constant number of amino acids will have a fairly constant
energy. One can view this as a microcanonical ensemble in which the spread
in the energy distributions is dictated by structural differences rather than by
fluctuations as found in the traditional ensemble.

Indeed, the lack of fluctuations in the ensemble has strong implications
for the proper statistical mechanical treatment of the zoo. If, for the sake of
argument, we accept the idea of a protein zoo being a microcanonical ensemble,
then it is apparent that the Boltzmann law, 1, cannot hold. Rather one has
the microcanonical law for the probability of a given configurational state *:

p=- (6)

for E+6FE > H > FE and
P=0 (7)
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otherwise. The microcanonical partition function is defined as:

q<E>:/Qé<E—H<z>>dz (8)

where 2 is defined as the phase space coordinates of an M particle system,
z=(q1,92,---qum, D01, P2, - - -Par) and € is the region of phase space that occu-
pies the energy from FE to E 4 0F and H is the Hamiltonian for the system.
The microcanonical probability has the advantage that temperature does not
appear explicitly in 6. However, it is very cumbersome and would be difficult
to implement in practical calculations.

While the microcanonical partition function meets many of the require-
ments of the protein zoo, there are still fundamental problems. These problems
are associated with the very basis of statistical mechanics. It is probabilistic
in nature and assumes minimal knowledge of phase space. In our protein zoo,
there is detailed knowledge of the coordinates. The basic problem with using
traditional statistical mechanics for the protein zoo is that the standard aver-
aging process presumes that the energy spacing between microstates is much
smaller than the measured uncertainty in the thermodynamic energy. We
cannot make this assumption for the protein zoo.

To see why standard statistical mechanics is inappropriate for a system
where there is detailed knowledge, we follow a discussion due to Penrose °.
It is important to distinguish between the tolerance in the experimental mea-
surement of the energy of the system, designated AFE, and the energy spacing
between microscopic energy levels, § E. Implicit in the averaging process of sta-
tistical mechanics, one assumes that there are many neighboring levels within
the tolerance, AF, so that AE/SFE is a large number. To determine the ob-
servational state, one typically uses a two-limit process. As the experimental
tolerance vanishes, 0 F will also vanish. However, the number of microscopic
energy levels in the system are still very dense. For standard statistical me-
chanical systems, a double limit is performed as:

o8 ~ lim [ lim —]

AF AE—06E—0 AF

For knowledge-based ensembles, one can, in principle, have near perfect
accuracy in determining the energy levels of the system. This microscopic ac-
curacy can exceed the accuracy of a macroscopic measurement. This situation

= Jm, 01 =0 ®

is akin to the “ordinary mechanics limit” discussed by Penrose !°. In such a
case, AF <« 0F and the limit is taken as:

AFE )

TE ik 5B~ o0 =0 (10)
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Despite the fact that both AE and 6FE become small, their ratio is quite
different in statistical mechanics as opposed to ordinary mechanics. When
detailed knowledge of the systems exists, as in the protein zoo or in computer
simulations, one has an ordinary mechanics limit. In this situation, one has
precise knowledge of the state at a given energy level, but cannot infer details
of the neighboring levels from this information. Also, any formulation of a
phase space density must be done in terms of delta functions, rather than
continuous functions. Such a formulation has not been previously developed.
The above considerations do not invalidate the use of statistical mechanics
for known systems. It does mean that care must be taken when performing
averages and when using the knowledge of these systems.

3 Knowledge-Based Statistical Mechanics and MDL

In previous work, a statistical mechanical formalism was developed that could
be used in either the statistical (9) or the classical (10) limit !'. This work
was based on defining the information content or complexity of phase space.
For a variety of technical reasons, it is convenient to use a complexity measure
developed by Rissanen '? called the stochastic complexity. This parameter
utilizes the principle of minimal description length (MDL). The basic concept
is that the best statistical estimation scheme is one in which both the data and
the model’s structure and parameters are represented in the shortest binary
string. If the number of parameters in the model is fixed, the MDL estimation
reduces to the familiar maximum likelihood scheme. At the other extreme,
when the parameters determine the data, MDL estimation is identical with
Jayne’s maximum entropy method '*. Thus, this approach represent a gener-
alization that encompasses more standard methods. The power of this scheme
is that it permits estimates of the entire model, the data, the parameters and
even the number of parameters. This means that the estimated parameters
need not be tested by external hypothesis to determine if the model is over
or under parameterized. A second advantage is that the MDL need not re-
fer to continuous probability functions. It can be used to describe objects
characterized by discrete values of their attributes.

In Rissanen’s approach, a given parametric model will have a known func-
tional form that allows the data set to be “encoded” by a set of parameter
values. These values, along with a list of “errors” representing the difference
between the fitted and observed data, capture the information content of the
model. The contribution from the errors is the maximum likelihood term. In
the case of a model in which the error in the data is a random variable, the
minimum length of the system is a description of this stochastic variable, hence
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the terminology: stochastic complexity. For a set of data x = (x1,22,...2N)
that is fit by a model with a parameter vector ®, the minimal description
length is:

L(x,0)=L(x|0®)+L(O) (11)

where L (x | ©) is the length of the binary string required to encode the data
and L (©) is the length of the string encoding the parameters. Because the
model will have a functional form that allows a predicted value to be calculated
succinctly, the data description can be represented as a description of the
errors, £, between fitted and observed data. This gives:

L(x|©)=L(]0)=-Iny(P(]|0)) (12)

For the minimal description length, P (£ | ®) will be the maximum likelihood
function and L (£ | ®) will be proportional to the sum of squared errors.

The term L (®) will contain an encoding of the functional form and pa-
rameters of the model. Usually the functional form is so succinct that it is not
considered to contribute significantly to the length. The fitted parameters can
be encoded by a string of length L (@) according to:

L(®) = ;mz (?-) (13)

with 6; being the precision of the ith parameter. Inclusion of the precision term
allows real valued parameters to be represented as integers for the purpose of
encoding
At first, this estimation method may not appear to be relevant to the sta-
tistical inference of traditional statistical mechanical methods. In statistical
mechanics, one works with a family of models whose parameters are the phase
space coordinates of an M particle system, z = (q1,qz, - . - M, P1, P2, - - - PM)
and with k& observables represented as: A (z) = (A1 (2),A2(2z),...Ax(2)).
The complexity of a many body system is given by the length of the mini-
mal description required to encode both the parameters and the observables,
L(z,A (z)). In a standard ensemble representation of phase space, this length
is given by:
L(z,A(z)) = —logy, P(A(z)|z) + L (2) (14)

where P (A (z) |z) is the likelihood of the data A (z) for the parameters z and
L (z) is the minimal encoding of the parameters.

Invariably M > k and the system is grossly under determined. Indeed
statistical mechanics does not attempt to “fit” data in the statistical estima-
tion sense. Rather it develops prior distributions that use the observables as
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constraints. Constraining the variables to be compatible with the prior means
that P (A (z) |z) is essentially constant. Thus, a maximum entropy encoding of
statistical mechanics consists only of the L (z) term along with the constraints.
Rissanen showed that minimizing the length L (z) is equivalent to maximizing
an “entropy function” subject to constraints 2.

It has been explicitly demonstrated that an encoding of the Gibbs en-
semble will give an L (z) that is equivalent to the general expression for the
thermodynamic entropy of the system !''. This approach offers more than
another way to derive statistical mechanics. It is seen that L (z, A (z)) has
the general properties of an entropy function. It is an extensive property of
the size of the system and it is a concave function about an equilibrium point.
This entropy function can than be used to describe microstates of ensembles
in which one has detailed information of the state. Because of its generality,
this approach is useful for discussing thermodynamic systems that obey both
the classical limit (see 10) and the statistical limit (as in 9).

Using 14 one can obtain a generalized Bayesian form for the system. By
analogy with continuous probability, the following functions can be defined:

P (z,(z)) =2~ =4 (15)

P(z)=2"t® (16)

It is important to note that these functions are not necessary derived from a
frequency distribution and can be used to represent encoded descriptions of
single objects. In the Kolmogorov interpretation, these are the probabilities
of randomly generating the binary string needed to describe the respective
object. The generalized Bayes formula then takes the form:

P(z,A(z)) = P(A(2)[2) P (2) (17)
= P(z|A(2)) P (A (2)) (18)

The advantage of 17 is that it provides a Bayesian format for developing the
analog of maximum entropy “image reconstruction” techniques.

It is interesting to view 17 and 18 in reference to the two descriptions,
statistical and classical in 9 and 10, respectively. In both cases, P (z, A (z))
provides an adequate description of the system. However, the weighting of the
different probability functions in 17 is different between the statistical and the
classical description. In probabilistic ensemble descriptions the thermodynamic
parameters narrowly define a most probable configuration. In this case, P (z)
has a very narrow distribution and P (A (z)|z) is quite broad. The breadth
of P(A (z)|z) is a result of the breadth in the tolerance in the macroscopic
energy of the system, AE. It is because of this that P (z) provides a good
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approximation for P (z, A (z)) and maximum entropy techniques can be used.
From 18 it is seen that ensemble statistical mechanics could also be developed
along the lines of the maximum likelihood method. In this case, P (z|A (z))
is used to approximate P (z, A (z)) and in the statistical limit P (z|(z)) will
be distributed very narrowly while P (A (z)) will be quite broad. Again, the
breadth of P (A (z)) is a reflection of AE.

In the classical limit, 10, the probability distribution function of the sys-
tem’s observables P (A (z) |z) is extremely narrow, possibly even narrower than
the experimental tolerance as a result of our knowledge of the system. The
distribution of the probability, P (z) will, for most thermodynamic systems, be
very broad. This is because there are many phase space configurations that
could correspond to a set of thermodynamic observables. When the number of
observables is much greater than the parameters, this situation is best treated
with maximum likelihood methods. In such cases, P (A (z)|z) is determined
and because of its breadth, P (z) can be ignored.

When there is partial knowledge of the system, one does not have a single
dominant probability function contributing to 17 or 18. It is this intermedi-
ate case that is most difficult for maximum likelihood and maximum entropy
techniques. This situation is best treated using Rissanen’s MDL estimation
scheme. The case of the protein zoo will most closely resemble this type of
system. This is because the content of the database does not greatly exceed
the content of the inferred potentials. Thus, the MDL scheme provides the
mathematical tools for determining the statistical mechanics (or more appro-
priately inferring thermodynamic relations) for the protein zoo. It should be
emphasized that our knowledge of the system in no way changes the thermo-
dynamics of it. All that is changed is how inferences are made. Regardless of
the “distribution” of knowledge about the system, it will always be represented
by some function, P (z, A (z)). What changes with knowledge is the best way
of calculating this function.

4 Reconstruction of Potential Functions from Structural Data

Jayne’s showed that statistical mechanics can be viewed as a form of statistical
inference rather than a physical theory '3. This formulation of statistical me-
chanics became the origin of the maximum entropy techniques used in image
reconstruction . In this view of statistical mechanics, the “image” that one
infers is that of the most probable phase space coordinates. The “imperfect
data” is our limited knowledge of the system. Usually, this will consist of the
macroscopic thermodynamic variables (such as E, V and T for a microcanon-
ical ensemble) as well as the microscopic energy levels (g;) derived from some
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quantum model or from spectroscopic measurements. This mapping from ob-
servable space to phase space is tricky because the number of observables, NV,
is much less than the number of variables in the image space (the M phase
space coordinates). The maximum entropy technique achieves this mapping
in the most unbiased way possible. Consequently, it is the method of choice
in such problems.

The maximum likelihood method, commonly used for fitting parameters
to data, requires that “observable space” be larger than “parameter space”,
i.e., N >> M. While this method is inappropriate for inference in statistical
mechanics, it may be appropriate for the analysis of computer simulations.
If one has detailed knowledge of phase space coordinates and wants to infer
thermodynamic parameters, one could appropriately use a maximum likelihood
formalism.

In this work, our goal is to use structural data to infer statistical properties
of intermolecular protein potentials. The observable space is the spatial coor-
dinates of all the amino acids in all the proteins of the protein zoo. The image
space is the potential function of interest for each amino acid pairing. As-
suming that chain directionality is not important, there are 200 pairings that
must be discretized along some relevant coordinate (angular and/or distance).
Both data space, the protein zoo, and image space, the statistical potentials,
will not be overwhelmingly different in size. Consequently, one cannot validly
use either maximum entropy or maximum likelihood methods.

As seen in the previous sections, the MDL yields L (z, A (z)) and P (z, A (z)).
These, in turn, are related to the entropy and the partition function, respec-
tively '*. To use the MDL estimation scheme in image reconstruction, one of
the Bayesian representations (17 or 18) will be used:

P(z,A(z)) = P(A(2) P (z|A (2)) (19)

or

P(z,A(z)) = P(z) P (A(z)|2) (20)

The choice of representation will depend upon the specific problem of inter-
est. Quite often the functions, P (z) or P (A (z)), will not be of particular
interest.  For instance, P (z) may represent some intrinsic quantum limit
on the uncertainty in a variable. Often, P (A (z)) will be a experimental,
measurement-limited distribution function. In such cases, these probabilities
are considered fixed. The Bayesian representation containing them is chosen
so that one focuses only on calculating the respective conditional probability.

For the protein problem, a structural database is used to generate a set
of phase space coordinates (denoted z,00), that allows the calculation of the



Pacific Symposium on Biocomputing 4:266-277 (1999)

respective protein potentials A (Zz00). While L (2200, A (Zzoo)) could be cal-
culated and used as an estimate of L (z, A (z)) and P (z, A (z)), this approx-
imation would lead to considerable variation from one databank to the next.
There are better, alternate ways of determining the function P (z, A (z)). In
the present case, P (z) is the natural distribution in protein coordinates, i.e.,
the spread in angular and spatial coordinates. While this is an interesting
parameter, we are more concerned with the potentials themselves. Thus,
this term is taken as fixed and the main computation task is determining
P (z|A (z)). This can be done using the Bayesian properties and a MDL max-
imization.
Returning to the “probability functions”, one has:

P (A(2);2500|2) = P (A (2) [2) P (2700|A (2) ,2) (21)

Using:
P(A(z)|z) = / P (A (2) . Znoo|A (2)) dZs00 (22)

one has the common image reconstruction equation *:

Prew (A(2)]z) = /Pold (A (2) |2) P (2z00|A (2) ,2) dZzo0 (23)

where Py (A (z)]|z) is the prior. The quantity P (z.00|A(2),2) is related
to how well the prior predicts the phase space data of the protein zoo. This
quantity is often assumed to take the form:

P (Zzo00|A (2),2) = exp {— (z — zzoo)2 /02} (24)
where o2 is some prescribed variance. Such a function gives a simple Gaussian
distribution for the errors between the data space and the image space and is
commonly used in image reconstruction. A direct physical justification for
the form of 24 can be derived from a path integral formulation of polymer
statistics. For the new potential function to be the best fit to the data, one
maximizes the integrand in 23 with respect to z. This gives the best potential
function consistent with the prior. Thus, 23 provides the basic algorithm for
calculating protein potentials.

5 Summary

In this work, the basic assumptions behind the use of the Boltzmann device
to derive protein potentials have been examined. It was seen that there is
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no justification for this device based on traditional statistical mechanical en-
sembles. To create a statistical mechanics that handles knowledge, a new
formalism is employed that is based on the MDL principle. With this ap-
proach, knowledge-based potentials can be derived by methods that formally
resemble image reconstruction techniques. Future work will focus on practical
applications of this approach.
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