Motivation
The analysis of big biomedical data is often presented with various challenges associated with the heterogeneity, multidimensionality, noisiness and incompleteness of the data itself, but also related to the computational resources required to complete the analysis. The data-intensive nature of computational genetics problem sets in the biomedical informatics field warrants the development and use of massive computer infrastructure and advanced software tools and platforms, including but not limited to the use of cloud computing. In this session, we will address innovative ways to identify and overcome challenges associated with the quality of various types of biomedical data, including Electronic Health Records, medical imaging etc. Additionally, we will focus on issues related to the optimization of tool development for large-scale datasets (keeping in mind issues like computing time and storage, the need for parallelization), as well as challenges associated with the cost in both time and resources of pattern recognition computational methods. Lastly, we will also address the challenges arising from trying to integrate biomedical data from various sources (including, but not limited to, one or across more species, use of raw data, or summary level statistics) to identify patterns in these multi-omic datasets.
![Mauna Kea](images/mauna_kea.jpg)
![Mauna Kea](images/beach.jpg)
![Mauna Kea](images/vnp2.jpg)